We have a two dimensional matrix A where each value is 0 or 1.
A move consists of choosing any row or column, and toggling each value in that row or column: changing all 0s to 1s, and all 1s to 0s.
After making any number of moves, every row of this matrix is interpreted as a binary number, and the score of the matrix is the sum of these numbers.
Return the highest possible score.
Example 1:
Input: [[0,0,1,1],[1,0,1,0],[1,1,0,0]]
Output: 39
Explanation:
Toggled to [[1,1,1,1],[1,0,0,1],[1,1,1,1]].
0b1111 + 0b1001 + 0b1111 = 15 + 9 + 15 = 39
Note:
1 <= A.length <= 20
1 <= A[0].length <= 20
A[i][j] is 0 or 1.
题目大意
题目中给了一个数组A,这个数组中只包含0,1。现在需要整行或者整列的进行转换操作,把0变成1,把1变成0。目标是进行一波t操作之后,把A中的每行数字转化成二进制数,是最终得到的二进制数的和最大。
解题方法
题目很烧脑,使用什么样的操作规则才能使得得到的最终数组二进制和最大。
1、根据二进制的特性,1000 一定大于 0111,所以首位数字一定要为1
2、第一列都为1时,那么行的变化就不能进行了,因为一单进行行的变化,每行的首位就会变成0
3、现在只需要对列进行操作就好,目标是保证每一列的1尽量多。
public int matrixScore(int[][] A) {
int row = A.length;
int col = A[0].length;
int current = 1<<(A[0].length-1);
int sum =current * row;
int k;
for(int i = 1; i< col;i++){
k = 0;
current = current>>1;
for(int j = 0;j<row;j++){
if((A[j][0]^A[j][i]) == 1){
k++;
}
}
k = Math.max(k,row - k);
sum += current * k;
}
return sum;
}
技巧:
1、避免对数组进行赋值操作,该为通过首列的值与第二列、第三列、…第n列进行异或操作。
1)如果首列为0,则需要对后面进行转换操作,0^1 = 0 , 0^0=1
2)如果首列为1,则无需进行转换操作, 1^1 = 1 , 1^0 = 0;
2、统计每一列1的个数k,因为0和1可以相互转换,所以行数减k取其大值就是该列1的最大值 。k = Math.max(k,row - k);
3)根据二进制的转换数字求和。