前言
本篇关于数组的覆盖更新、滑动窗口的应用、螺旋遍历数组。
977.有序数组平方
思路
题目数组为升序数组,从前到后的数的绝对值是从大到小再变大,重新排列从小到大数组时只需要两边比较后再选出平方和更大的组成新数组即可。
方法
1. 暴力法
//时间复杂度O(nlogn)
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
for (int i = 0; i < A.size(); i++) {
A[i] *= A[i];
}
sort(A.begin(), A.end()); // 快速排序
return A;
}
};
2.双指针法
//时间复杂度O(n)
class Solution {
public:
vector<int> sortedSquares(vector<int>& A) {
int k=A.size()-1;
vector<int> result(A.size(),0);
for (int i = 0, j = A.size() - 1;i <= j;) {
if (A[i] * A[i] < A[j] * A[j]) {
result[k--] = A[j] * A[j];
j--;
}
else {
result[k--] = A[i] * A[i];
i++;
}
}
return result;
}
}
};
总结
容易忘记新数组按升序排列,vector容器应该从下标A.size()-1开始。定义vector容器记得初始化。
209.长度最小的子数组
思路
- 暴力法
- 滑动窗口法
本题代码
- 暴力法
//时间复杂度O(n^2)
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX; // 最终的结果
int sum = 0; // 子序列的数值之和
int subLength = 0; // 子序列的长度
for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
sum = 0;
for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
sum += nums[j];
if (sum >= s) { // 一旦发现子序列和超过了s,更新result
subLength = j - i + 1; // 取子序列的长度
result = result < subLength ? result : subLength;
break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};
2.滑动窗口法
//时间复杂度O(n)
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int sum=0;
int result=INT32_MAX;
int i=0;
for(int j=0;j<nums.size();j++){
sum+=nums[j];
while(sum>=s){
sublength=j-i+1;
result= result>sublength?sublength:result;
sum-=nums[i];
}
return result==INT32_MAX?0:result;
};
其他题目
904. 水果成篮
用map容器记录各个种类的数量。当种类数大于3种,即超过两个篮子,直接让left后移,已达到让种类数等于2的情况,再记录长度大小。
class Solution {
public:
int totalFruit(vector<int>& fruits) {
unordered_map<int, int> cnt;
int left = 0, ans = 0;
for (int right = 0; right < fruits.size(); ++right) {
++cnt[fruits[right]];
while (cnt.size() > 2) {
auto it = cnt.find(fruits[left]);
--it->second;
if (it->second == 0) {
cnt.erase(it);
}
++left;
}
ans = max(ans, right - left + 1);
}
return ans;
}
};
class Solution {
public:
string minWindow(string s, string t) {
unordered_map<char, int> cnts;
unordered_map<char, int> cntt;
for (int i=0;i<t.size();i++){
cntt[t[i]]++;
}
string ans;
int count= 0;
for (int right= 0, left= 0; right< s.size(); right++ ) {
cnts[s[right]]++ ;
if (cnts[s[right]] <= cntt[s[right]]) count++ ;
while (cnts[s[left]] > cntt[s[left]]) cnts[s[left++ ]] -- ;
if (count== t.size()) {
if (ans.empty() || right- left+ 1 < ans.size())
ans = s.substr(left, right- left+ 1);
}
}
return ans;
}
};
总结
滑动窗口适合于数组内求连续的符合条件的子集,先固定一个不符合题意的窗口大小,用窗口左边界向后移的方式使更改后的窗口大小满足条件,依次寻求最符合题意的值。
59.螺旋矩阵
思路
矩阵的遍历方式一般是有迹可循的,掌握了一定的规律,在面对“螺旋”、“Z字”、"N字”等遍历方法才能快速写出来。
这道题是矩阵容器,先判断循环的圈数、每次循环初始位置/终止位置、每次循环遍历的长度即可写出。
本题方法
class Solution {
public:
vector<vector<int>> generateMatrix(int n) {
vector<vector<int>> res(n, vector<int>(n, 0)); // 使用vector定义一个二维数组
int startx = 0, starty = 0; // 定义每循环一个圈的起始位置
int loop = n / 2; // 每个圈循环几次,例如n为奇数3,那么loop = 1 只是循环一圈,矩阵中间的值需要单独处理
int mid = n / 2; // 矩阵中间的位置,例如:n为3, 中间的位置就是(1,1),n为5,中间位置为(2, 2)
int count = 1; // 用来给矩阵中每一个空格赋值
int offset = 1; // 需要控制每一条边遍历的长度,每次循环右边界收缩一位
int i,j;
while (loop --) {
i = startx;
j = starty;
// 下面开始的四个for就是模拟转了一圈
// 模拟填充上行从左到右(左闭右开)
for (j = starty; j < n - offset; j++) {
res[startx][j] = count++;
}
// 模拟填充右列从上到下(左闭右开)
for (i = startx; i < n - offset; i++) {
res[i][j] = count++;
}
// 模拟填充下行从右到左(左闭右开)
for (; j > starty; j--) {
res[i][j] = count++;
}
// 模拟填充左列从下到上(左闭右开)
for (; i > startx; i--) {
res[i][j] = count++;
}
// 第二圈开始的时候,起始位置要各自加1, 例如:第一圈起始位置是(0, 0),第二圈起始位置是(1, 1)
startx++;
starty++;
// offset 控制每一圈里每一条边遍历的长度
offset += 1;
}
// 如果n为奇数的话,需要单独给矩阵最中间的位置赋值
if (n % 2) {
res[mid][mid] = count;
}
return res;
}
};
其他题目
class Solution {
public:
vector<int> spiralOrder(vector<vector<int>>& matrix) {
vector<int> ans;
if(matrix.empty()) return ans; //若数组为空,直接返回答案
int u = 0; //赋值上下左右边界
int d = matrix.size() - 1;
int l = 0;
int r = matrix[0].size() - 1;
while(true)
{
for(int i = l; i <= r; ++i) ans.push_back(matrix[u][i]); //向右移动直到最右
u++;
if(u > d) break; //重新设定上边界,若上边界大于下边界,则遍历遍历完成,下同
for(int i = u; i <= d; ++i) ans.push_back(matrix[i][r]); //向下
r--;
if(r < l) break; //重新设定右边界
for(int i = r; i >= l; --i) ans.push_back(matrix[d][i]); //向左
d--;
if( d < u) break; //重新设定下边界
for(int i = d; i >= u; --i) ans.push_back(matrix[i][l]); //向上
l++;
if(l > r) break; //重新设定左边界
}
return ans;
}
};
总结
- 螺旋矩阵
- 起始位置的(x,y),则要定义 startX 和 startY 。
- offset,即的是第几圈了,offset的改变会影响螺旋矩阵的停止位置
- count,填充量,这个不用多说
- loop,即螺旋矩阵转多少圈,为while循环的判断条件,loop=n/2;
- 一定要判断螺旋矩阵是奇数阵还是偶数阵,这个真的超级超级超级重要 💔
- 螺旋二维数组
- 四个边界:up/down/left/right,向一个方向遍历完后则需要向二维矩阵内部递进一格