Day37:1049. 最后一块石头的重量 II、494.目标和、474.一和零


1049. 最后一块石头的重量 II

题目链接

思路

分割等和子集思路一样,都是把一个集合分成和满足target的两部分

  1. 确定dp数组(dp table)以及下标的含义
    dp[j]:容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]
  2. 确定递推公式
    dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])
  3. dp数组如何初始化
    dp[j]都初始化为0
  4. 确定遍历顺序
    使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历
  5. 举例推导dp数组

代码实现

class Solution {
public:
    int lastStoneWeightII(vector<int>& stones) {
        int sum=0;
        for(int i=0;i<stones.size();i++){
            sum+=stones[i];
        }
        int target;
        target=sum/2;
        vector<int> dp(10010,0);
        for(int i=0;i<stones.size();i++){
            for(int j=target;j>=stones[i];j--){
                dp[j]=max(dp[j],dp[j-stones[i]]+stones[i]);
            }
        }
        return sum-2*dp[target];   
    }
};

494.目标和

题目链接

思路

这道题粗看毫无头绪,但如果将数组分为两部分,left为相加部分,right为相见部分,当left-right=target,而sum=left+right,则可得left=(target+sum)/2,所以这道题和分割等和子集有异曲同工之妙。

  1. 确定dp数组(dp table)以及下标的含义
    dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法
  2. 确定递推公式
    只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法
  3. dp数组如何初始化
    1. dp[0]=1,如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法
    2. dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来
  4. 确定遍历顺序
    从前到后
  5. 举例推导dp数组

这有一个剪枝的点值得一提:
当sum+target的值为奇数时,得不到结果,为什么?
换个思路想想,当sum为偶数,target为奇数,那么left-right=target为奇数,则left和right肯定是一奇一偶,那他们的总和不可能为偶,所以sum和target不可能一奇一偶。

代码实现

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum=0;
        for(int i=0;i<nums.size();i++)sum+=nums[i];
        if((sum+target)%2==1)return 0;
        if(sum<abs(target))return 0;
        int left=(sum+target)/2;
        vector<int> dp(10010,0);
        dp[0]=1;
        for(int i=0;i<nums.size();i++){
            for(int j=left;j>=nums[i];j--){
                dp[j]+=dp[j-nums[i]];
            }
        }
        return dp[left];
    }
};

474.一和零

题目链接

思路

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]
  2. 确定递推公式
    dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)
    dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。
    dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1
  3. dp数组如何初始化
    dp数组初始化为0就可以。因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖
  4. 确定遍历顺序
    外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历
  5. 举例推导dp数组

代码实现

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0
        for (int k=0;k<strs.size();k++) { // 遍历物品
            int oneNum = 0, zeroNum = 0;
            for (int i=0;i<strs[k].size();i++) {
                if (strs[k][i]== '0') zeroNum++;
                else oneNum++;
            }
            for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
                for (int j = n; j >= oneNum; j--) {
                    dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
                }
            }
        }
        return dp[m][n];
    }
};


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值