1049. 最后一块石头的重量 II
思路
和分割等和子集思路一样,都是把一个集合分成和满足target的两部分
- 确定dp数组(dp table)以及下标的含义
dp[j]:容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j] - 确定递推公式
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]) - dp数组如何初始化
dp[j]都初始化为0 - 确定遍历顺序
使用一维dp数组,物品遍历的for循环放在外层,遍历背包的for循环放在内层,且内层for循环倒序遍历 - 举例推导dp数组
代码实现
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
int sum=0;
for(int i=0;i<stones.size();i++){
sum+=stones[i];
}
int target;
target=sum/2;
vector<int> dp(10010,0);
for(int i=0;i<stones.size();i++){
for(int j=target;j>=stones[i];j--){
dp[j]=max(dp[j],dp[j-stones[i]]+stones[i]);
}
}
return sum-2*dp[target];
}
};
494.目标和
思路
这道题粗看毫无头绪,但如果将数组分为两部分,left为相加部分,right为相见部分,当left-right=target,而sum=left+right,则可得left=(target+sum)/2,所以这道题和分割等和子集有异曲同工之妙。
- 确定dp数组(dp table)以及下标的含义
dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法 - 确定递推公式
只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法 - dp数组如何初始化
- dp[0]=1,如果数组[0] ,target = 0,那么 bagSize = (target + sum) / 2 = 0。 dp[0]也应该是1, 也就是说给数组里的元素 0 前面无论放加法还是减法,都是 1 种方法
- dp[j]要保证是0的初始值,才能正确的由dp[j - nums[i]]推导出来
- 确定遍历顺序
从前到后 - 举例推导dp数组
这有一个剪枝的点值得一提:
当sum+target的值为奇数时,得不到结果,为什么?
换个思路想想,当sum为偶数,target为奇数,那么left-right=target为奇数,则left和right肯定是一奇一偶,那他们的总和不可能为偶,所以sum和target不可能一奇一偶。
代码实现
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum=0;
for(int i=0;i<nums.size();i++)sum+=nums[i];
if((sum+target)%2==1)return 0;
if(sum<abs(target))return 0;
int left=(sum+target)/2;
vector<int> dp(10010,0);
dp[0]=1;
for(int i=0;i<nums.size();i++){
for(int j=left;j>=nums[i];j--){
dp[j]+=dp[j-nums[i]];
}
}
return dp[left];
}
};
474.一和零
思路
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j] - 确定递推公式
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。
dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1 - dp数组如何初始化
dp数组初始化为0就可以。因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖 - 确定遍历顺序
外层for循环遍历物品,内层for循环遍历背包容量且从后向前遍历 - 举例推导dp数组
代码实现
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0
for (int k=0;k<strs.size();k++) { // 遍历物品
int oneNum = 0, zeroNum = 0;
for (int i=0;i<strs[k].size();i++) {
if (strs[k][i]== '0') zeroNum++;
else oneNum++;
}
for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!
for (int j = n; j >= oneNum; j--) {
dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
}
}
}
return dp[m][n];
}
};