适合学习有限元编程的小白!有限元法求解一维泊松方程MATLAB程序及详解,纯原创。(程序含注释)

1.一维泊松方程详解

Poission方程是物理学和工程学中非常常见的一种方程,它在热传导、电磁场和流体动力学等许多领域中都有应用。

一维泊松方程是是泊松方程在一维情况下的特殊形式。在一维情况下,泊松方程通常可以表示为以下形式:

-d²u/dx² = f(x)

其中,u是一个实值函数,x是一维空间中的点,f(x)是给定的源项或称为荷载项。

泊松方程是由法国数学家兼物理学家司马翁·但尼·泊松(Simeon Denis Poisson)命名的。泊松方程实际上是著名的拉普拉斯方程(即f(x)=0时的情况)的一般化形式,它对应于许多物理现象的非齐次性。

一维泊松方程在实际中有广泛应用,例如在传热学中,u可代表温度,f代表单位体积内的热源;在电磁学中,u可代表电势,f代表电荷密度;在弹性力学中,u可代表位移,f代表力密度等。

2.Dirichlet边界条件和Neumann边界条件

当我们在求解这个方程的时候,我们还需要知道相应的边界值问题,例如Dirichlet边界或Neumann边界,它们提供在边界上的值或者相关的导数值。

下面详细介绍一下这两种边界条件:

Dirichlet边界条件和Neumann边界条件是两种主要的边界条件类型,它们在很多物理问题中很常见,特别是偏微分方程中。这里给出他们的定义和特点:

  1. Dirichlet边界条件: 这个条件要求在边界上函数的值是已知的。具体来说,如果u是一个定义在某个区域Ω上的函数,并且我们正在考虑一个相关的边值问题。如果我们知道函数u在Ω的边界∂Ω上的值,比如给具体数值u(x)=g(x), for x∈∂Ω,那么,所谓的Dirichlet边界条件就满足了。在各种物理问题中,例如热量传导问题,我们经常知道物体边界上的温度,那么这就是Dirichlet边界条件。

  2. Neumann边界条件: 相对于Dirichlet,Neumann边界条件并不对函数在边界上的具体数值做要求,而是给出边界上函数的导数或者说法向导数(在更高维度中)的值。具体来说,假设给定法向导数的值 ∂u/∂n = g(x), for x∈∂Ω。这样的条件在各种物理问题中也很常见,例如描述无热流通过的边界情况。

他们的区别

最主要的区别在于条件的性质和要求,Dirichlet边界条件规定了边界上的函数值,而Neumann边界条件规定了边界上函数的法向导数值。

另外,这两种边界条件经常根据具体问题需求和特性在各种物理问题中同时使用,构成了所谓混合边界条件

3.一维泊松方程的MATLAB编程实现

下面是一个使用最小二乘有限元方法(Least Squares FEM)对一维Poisson方程进行求解的MATLAB代码。

% 初始化
clear; clc; close all;

% problem definition
a = 0; % 计算区域的左端点
b = 1; % 计算区域的右端点
f = @(x) pi^2*sin(pi*x); % 右手富源项函数
exact = @(x) sin(pi*x); % 精确解

% 一维网格划分
N = 10; % 单元个数
h = (b - a) / N; % 单元长度
x = a : h : b; % 网格节点

% 组装将全局刚度矩阵和载荷向量
K = zeros(N+1, N+1); % 刚度矩阵 (集成全局系统的系统矩阵)
F = zeros(N+1, 1); % 载荷向量 (源节点的载荷向量)

for i = 1 : N
    % local stiffness matrix
    K_local = [1/h, -1/h; -1/h, 1/h];
    
    % local load vector
    F_local = [h/2; h/2] * f(mean(x(i : i + 1)));
    
    % assembly
    K(i : i + 1, i : i + 1) = K(i : i + 1, i : i + 1) + K_local;
    F(i : i + 1) = F(i : i + 1) + F_local;
end

% 应用Dirichlet边界条件
K(1, :) = 0; K(:, 1) = 0; K(1, 1) = 1;
K(N + 1, :) = 0; K(:, N + 1) = 0; K(N + 1, N + 1) = 1;
F(1) = exact(a);
F(N + 1) = exact(b);

% 求解
u = K \ F;

% 输出结果对比
figure;
plot(x, u, 'r-', x, exact(x), 'b--');
xlabel('x'); ylabel('u');
legend('FEM', 'Exact');

% 误差
error = max(abs(u - exact(x).'));

% 结束

4.计算结果对比

可以看到设置十个网格计算出来的结果与解析解已经十分接近,如果想要结果更加精确,加密网格即可。

5.结尾

请注意,这只是一个最基本的有限元方法的实现,对于更复杂的问题,例如非线性问题、高维问题以及需要使用更高阶元素的问题,需要的代码将会更为复杂。

码字码代码不易请多多关注。

  • 11
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的 MATLAB 程序,用于求解二维泊松方程: ```matlab % 定义网格尺寸和边界条件 N = 50; % 网格数量 L = 1; % 区域长度 h = L/N; % 网格尺寸 x = (h/2:h:L-h/2)'; % 网格节点 [X,Y] = meshgrid(x,x); % 网格 f = -8*pi^2*sin(2*pi*X).*sin(2*pi*Y); % 要求解泊松方程右侧 % 定义边界条件 u = zeros(N,N); u(:,1) = sin(2*pi*x); % 左边界 u(:,end) = -sin(2*pi*x); % 右边界 u(1,:) = 0; % 上边界 u(end,:) = 0; % 下边界 % 构造系数矩阵和右侧向量 A = zeros(N^2,N^2); b = zeros(N^2,1); for i = 1:N for j = 1:N k = j + (i-1)*N; if i==1 || i==N || j==1 || j==N % 边界节点 A(k,k) = 1; b(k) = u(i,j); else % 内部节点 A(k,k) = -4/h^2; A(k,k-1) = 1/h^2; A(k,k+1) = 1/h^2; A(k,k-N) = 1/h^2; A(k,k+N) = 1/h^2; b(k) = f(i-1,j-1); end end end % 求解线性方程组 U = A\b; % 将解向量转换为网格形式 U = reshape(U,N,N); % 绘制解 surf(X,Y,U) xlabel('x') ylabel('y') zlabel('u') ``` 在这个程序中,我们首先定义网格尺寸和边界条件。然后,我们构造系数矩阵和右侧向量,并使用 MATLAB 中的“\”运算符求解线性方程组。最后,我们将解向量转换为网格形式,并绘制解的表面。注意,这个程序中的边界条件是非零的,因此我们需要将边界节点的值插入到系数矩阵和右侧向量中。如果边界条件为零,则无需这样做。 这个程序只是一个简单的例子,实际应用中可能需要更复杂的技术,如多重网格方法、预处理等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值