- 博客(4)
- 收藏
- 关注
原创 AECR论文的笔记
本文提出了一种基于对比正则化(CR)和类自编码器(AE)的轻量级去雾网络AECR。针对现有方法仅使用清晰图像作为正样本的局限性,AECR引入对比学习机制,利用模糊图像作为负样本进行约束,通过拉近清晰图像、推远模糊图像提升去雾效果。网络采用自适应混合(AdaptiveMixup)保持特征信息,动态特征增强(DFE)模块扩大感受野,在参数不到1000万的情况下超越现有最优方法(SOTA)。实验表明,AECR在合成和真实雾霾数据集上均取得最佳性能,PSNR和SSIM指标显著提升,且避免了传统方法常见的颜色失真和伪
2025-06-13 11:44:32
523
原创 学习Cyclegan笔记
好的我们现在知道了gan模型的全程是生成式对抗模型,其实就是一个生成器跟判别器的博弈的过程,生成器想要生成跟输入媲美的内容,判别器想要识别是真的图片还是生成器生成的内容,然后再这种竞争之中,双方的性能都越来越好,直到达到一种均衡。就是很难独立地优化对抗目标,还有就是所有输入都对应相同的输出,我们就要加入更多的结构了,最好是一致的,就比如说英语翻译到了法语,然后再翻译回来,跟原文是一样的。本文提出的是捕获一个图像集合的特殊特征,弄清楚是怎么从这个特征转化为另一个的,然后这些都没有配对训练示例。
2025-06-06 18:48:15
614
原创 关于我忘记为什么SE-net能提取权重之后的思考
BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。对于网络的实际的输出与期望输出之间的误差,把误差信号从最后一层逐层反传,从而获得各个层的误差学习信号,然后再根据误差学习信号来修正各层神经元的权值。正向传播时,把样本的特征从输入层进行输入,信号经过各个隐藏层的处理后,最后从输出层传出。这就是最简单的感知机。把我们需要的通道权重。
2025-06-03 16:10:49
519
原创 关于SE,跟ECAnet的学习笔记
举个栗子,比如图像分类问题,一个数据集里面包含若干张图片,每张图片里面包含了M个物体,如果把每一种物体标签属性都提供是最好的结果,但是数据标注工作费时费力,现在数据量很大,完全标注肯定不可能,如果数据集中的数据出现样本只标注部分类别没有被完全标注的情况,也算一种弱标注。还有一种情况是只提供了所有类别标签,没有提供图片样本里面物体的具体位置等属性信息,也就是缺乏详细信息,也是一种弱标注。
2025-05-30 22:23:10
825
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人