✨题目链接:
✨题目描述
Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家 Levenshtein 提出的,故又叫 Levenshtein Distance 。
例如:
字符串A: abcdefg
字符串B: abcdef
通过增加或是删掉字符 ”g” 的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。
要求:
给定任意两个字符串,写出一个算法计算它们的编辑距离。
数据范围:给定的字符串长度满足 1≤𝑙𝑒𝑛(𝑠𝑡𝑟)≤1000 1≤len(str)≤1000
✨输入描述:
每组用例一共2行,为输入的两个字符串
✨输出描述:
每组用例输出一行,代表字符串的距离
✨示例1
📍输入
abcdefg abcdef
📍输出
1
✨解题思路
解法:动态规划
- dp[i][j]用来表示字符串a的[1...i]和字符串b[1...j]的levenshtein距离;
- 如果a[i-1] == b[j-1],则说明a[i]和b[j]分别加入a,b之后不会影响levenshtein距离,dp[i][j] = dp[i-1][j-1] ;
- 如果a[i] != b[j],则需要考虑3种情况的可能:
- a中插入字符,即dp[i][j] = dp[i-1][j] + 1;
就是要把 a的1-i-1 变成 b的1-j 并加上本次操作 1 - b中插入字符,即dp[i][j] = dp[i][j-1] + 1;
就是要把 b 的1-j-1 变成 a 的1-i 并加上本次操作 1 - a[i]替换成b[j],dp[i][j] = dp[i-1][j-1] + 1;
- 取3种情况的最小值。
- a中插入字符,即dp[i][j] = dp[i-1][j] + 1;
- 输出结果dp[n][m]
✨代码
#include <iostream>
#include <string>
using namespace std;
int main()
{
string a,b;
cin>>a>>b;
int n=a.size();
int m =b.size();
int dp[1010][1010];
for(int j=0;j<=m;j++) dp[0][j]=j;
for(int i=0;i<=n;i++) dp[i][0]=i;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1];
else
{
dp[i][j]=min(min(dp[i-1][j]+1,dp[i-1][j-1]+1),dp[i][j-1]+1);
}
}
}
cout<<dp[n][m]<<endl;
return 0;
}
※ 如果文章对你有帮助的话,可以点赞收藏!!谢谢支持