【C++】牛客——HJ52 计算字符串的编辑距离

✨题目链接:

HJ52 计算字符串的编辑距离


✨题目描述 

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家 Levenshtein 提出的,故又叫 Levenshtein Distance 。

例如:

字符串A: abcdefg

字符串B: abcdef

通过增加或是删掉字符 ”g” 的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。

要求:

给定任意两个字符串,写出一个算法计算它们的编辑距离。

数据范围:给定的字符串长度满足 1≤𝑙𝑒𝑛(𝑠𝑡𝑟)≤1000 1≤len(str)≤1000 

✨输入描述:

每组用例一共2行,为输入的两个字符串

✨输出描述:
 

每组用例输出一行,代表字符串的距离 

✨示例1


📍输入

abcdefg abcdef 

📍输出

✨解题思路

 解法:动态规划

  1. dp[i][j]用来表示字符串a的[1...i]和字符串b[1...j]的levenshtein距离;
  2. 如果a[i-1] == b[j-1],则说明a[i]和b[j]分别加入a,b之后不会影响levenshtein距离,dp[i][j] = dp[i-1][j-1] ;
  3. 如果a[i] != b[j],则需要考虑3种情况的可能:
    1. a中插入字符,即dp[i][j] = dp[i-1][j] + 1;
      就是要把 a的1-i-1  变成 b的1-j  并加上本次操作 1  
    2. b中插入字符,即dp[i][j] = dp[i][j-1] + 1;
      就是要把 b 的1-j-1  变成 a 的1-i  并加上本次操作 1  
    3. a[i]替换成b[j],dp[i][j] = dp[i-1][j-1] + 1;
    4. 取3种情况的最小值。
  4.  输出结果dp[n][m]

 


✨代码
 

#include <iostream>
#include <string>

using namespace std;

int main()
{
    string a,b;
    cin>>a>>b;
    int n=a.size();
    int m =b.size();
    int dp[1010][1010];
    for(int j=0;j<=m;j++) dp[0][j]=j;
    for(int i=0;i<=n;i++) dp[i][0]=i;

    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(a[i-1]==b[j-1]) dp[i][j]=dp[i-1][j-1];
            else
            {
                dp[i][j]=min(min(dp[i-1][j]+1,dp[i-1][j-1]+1),dp[i][j-1]+1);
            }
        }
    }
    cout<<dp[n][m]<<endl;
    return 0;
}


※ 如果文章对你有帮助的话,可以点赞收藏!!谢谢支持

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一岁就可帅-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值