一、缓存穿透
1、概念
- 用户想要查一个数据,发现Redis内存数据库中没有,也就是缓存没命中,于是向持久层数据库查询,发现也没有,于是本次查询失败。当用户很多时,缓存都没有命中(秒杀!),于是都去请求持久层数据库,这就会导致持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。
2、解决方案
①、布隆过滤器:是一种数据结构,对所有可能查询的参数以Hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免存储系统的查询压力。
②、**缓存空对象:**当存储层不命中后,即使返回的空对象也将其缓存起来,同时会设置一个过期时间,之后再访问这个数据将会从缓存中获取,保护了后端数据源
③、存在问题
- 如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键
- 即使空值设置了过期时间,还会存在缓存层和存储层的数据会有一段时间窗口的不一致,这对于需要保持一致性的业务会有影响
二、缓存击穿(查询量太大,缓存过期瞬间)
1、概念
- 当某个key在过期瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新数据,并且回写缓存,会导致数据库瞬间压力过大。
- 缓存击穿:是指一个key非常热点,在不停的扛着大并发,大并发集中对一个点进行访问,当这个key在失效的瞬间,执行的大并发就穿破缓存,直接请求持久层数据库,就像在一个屏幕上凿开一个洞。
2、解决方案
①、设置热点数据永不过期:从缓存层面上讲,没有设置过期时间,所以不会出现热点key过期后产生的问题。
②、加分布式互斥锁:使用分布式锁,保证对于每个key同时只能有一个线程去查询后端服务,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此分布式锁的考验很大。
三、缓存雪崩(集中失效)
1、概念
- 指在某一时间段,缓存集中过期失效。Redis宕机!
2、产生原因
- 如双十一零点抢购,会把同一批商品信息比较集中的放入缓存中,假设缓存设置一个小时的过期时间,那么到凌晨一点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压抑波峰。于是所有的请求就会向存储层,存储层的调用量会暴增,可能造成存储层奔溃,服务器宕机。
- 其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个结点宕机或断网。因为自然形成的缓存雪崩,一定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知的,很可能瞬间就把数据库压垮。
3、解决方案
①、Redis高可用:既然Redis有可能挂到,那我们多增设几台Redis,这样挂掉之后其他的还可以继续工作,其实就是搭建集群
②、限流降级:在缓存失效后,通过加锁或队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。
③、数据预热:在正式部署之前,我们先把数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中,在即将发生大并发访问手动触发加载缓存不同的key,设置不同的过期时间,让缓存失效的时间点尽量均匀。