BZOJ[1815]男人一上午写一道题,机房人不解;看到内容,众人沉默,网友:长见识了

0 篇文章 0 订阅

传送门ber~

详细题解

知道点的顺序,边的顺序也能确定下来,所以对于点置换可以算出相应的边置换计算
可我们总不能 n ! n! n!枚举全排列,我们可以进一步发现,结构相同的点置换对应的边置换肯定是一样的(废话),可以搜出所有不同结构的点置换,发现 n = 53 n=53 n=53时点置换个数不到 30 w 30w 30w

当前搜到点置换 L 1 ≤ L 2 ≤ L 3 ≤ . . . ≤ L k L_1\le L_2\le L_3\le...\le L_k L1L2L3...Lk,那么需要计算边置换循环个数
连接不同点循环循环i,j的边:一个循环覆盖 L c m ( L i , L j ) Lcm(L_i,L_j) Lcm(Li,Lj)条边,所以 c = L i ∗ L j L c m ( L i , L j ) = g c d ( L i , L j ) c=\frac{L_i*L_j}{Lcm(L_i,L_j)}=gcd(L_i,L_j) c=Lcm(Li,Lj)LiLj=gcd(Li,Lj)个循环(画画图更容易理解一点)
点循环 i i i内部的边:循环数为 L i − 1 2 \frac{L_i-1}{2} 2Li1(因为一半会重)
所以总循环数 C = ∑ ⌊ L i 2 ⌋ + ∑ ∑ g c d ( L i , L j ) C=\sum \lfloor \frac{L_i}{2} \rfloor+\sum\sum gcd(L_i,L_j) C=2Li+gcd(Li,Lj)
L 1 ≤ L 2 ≤ L 3 ≤ . . . ≤ L k L_1\le L_2\le L_3\le...\le L_k L1L2L3...Lk循环数量容易推得为 n ! L 1 L 2 . . . L n B 1 ! B 2 ! . . . B n ! \frac{n!}{L_1L_2...L_nB_1!B_2!...B_n!} L1L2...LnB1!B2!...Bn!n!,其中 B i B_i Bi表示循环长度为 i i i的循环个数
剩下的套Polya就行了

代码如下:

#include<bits/stdc++.h>
#define int long long
#define N 120
using namespace std;
inline int read(){
    int x=0,f=1;char c;
    do c=getchar(),f=c=='-'?-1:f; while(!isdigit(c));
    do x=(x<<3)+(x<<1)+c-'0',c=getchar(); while(isdigit(c));
    return x*f;
}
typedef long long LL;
int n,m,p,s[N],a[N],jc[N],gd[N][N];
LL ans;
LL gcd(LL a,LL b){
    return b?gcd(b,a%b):a;
}
inline LL qpow(LL x,int k){
    LL sum=1;
    while(k){
        if(k&1) sum=sum*x%p;
        x=x*x%p;
        k>>=1;
    }
    return sum;
}
void dfs(int x,int cnt,int pre){
    if(cnt==n){
        LL t=0,pp=1;
        for(int i=1;i<x;i++)
            t+=s[i]/2;
        for(int i=1;i<x;i++)
            for(int j=i+1;j<x;j++)
                t+=gd[s[i]][s[j]];
        for(int i=1;i<=n;i++) (pp*=jc[a[i]])%=p;
        for(int i=1;i<x;i++) (pp*=s[i])%=p;
       // cout<<pp<<" "<<t<<endl;
        (ans=ans+jc[n]*qpow(pp,p-2)%p*qpow(m,t)%p)%=p;
        return;
    }
    for(int i=pre;i<=n-cnt;i++){
        s[x]=i;a[i]++;
        dfs(x+1,cnt+i,i);
        a[i]--;
    }
}
main(){
    n=read();m=read();p=read();
    for(int i=jc[0]=1;i<=n;i++) jc[i]=jc[i-1]*i%p;
    for(int i=1;i<=n;i++)
        for(int j=i;j<=n;j++) gd[i][j]=gd[j][i]=gcd(i,j);
    dfs(1,0,1);
    printf("%lld\n",ans*qpow(jc[n],p-2)%p);
    return 0;
}

### 回答1: bzoj作为一个计算机竞赛的在线评测系统,不仅可以提供大量的目供程序员练习和学习,还可以帮助程序员提升算法和编程能力。为了更好地利用bzoj进行目的学习和刷,制定一个bzoj计划是非常有必要的。 首先,我们需要合理安排时间,每天留出一定的时间来做bzoj目。可以根据自己的时间安排,每天挑选适量的目进行解答。可以先从难度较低的目开始,逐渐提高难度,这样既能巩固基础知识,又能挑战自己的思维能力。 其次,要有一个计划和目标。可以规划一个每周或每月的目数量目标,以及每个阶段要学习和掌握的算法知识点。可以根据bzoj目分类,如动态规划、图论、贪心算法等,结合自己的实际情况,有针对性地选择目进行学习。 此外,要充分利用bzoj提供的资源。bzoj网站上有很多高质量的解和优秀的解代码,可以参考和学习。还有相关的讨论区,可以与其他程序员交流和讨论,共同进步。 最后,要坚持并保持思考。做不是单纯为了刷数量,更重要的是学会思考和总结。遇到难时,要有耐心,多思考,多尝试不同的解法。即使不能一次性解出来,也要学会思考和分析解过程,以及可能出现的错误和优化。 总之,bzoj计划的关键在于合理安排时间、制定目标、利用资源、坚持思考。通过有计划的刷,可以提高算法和编程能力,并培养解决问的思维习惯,在计算机竞赛中取得更好的成绩。 ### 回答2: bzoj计划是指在bzoj这个在线测评系统上制定一套学习和刷的计划,并且将计划记录在excel表格中。该计划主要包括以下几个方面的内容。 首先是学习目标的设定。通过分析自己的水平和知识缺口,可以设定一个合理的目标,比如每天解决一定数量的目或者提高特定的算法掌握程度。 其次是目选择的策略。在excel表格中可以记录下自己选择的目编号、目类型和难度等信息。可以根据目的类型和难度来安排每天的刷计划,确保自己可以逐步提高技巧和解能力。 然后是学习进度的记录和管理。将每天的完成情况记录在excel表格中,可以清晰地看到自己的学习进度和任务完成情况。可以使用图表等功能来对学习进度进行可视化展示,更好地管理自己的学习计划。 同时,可以在excel表格的备注栏中记录下每道目的解思路、关键点和需要复习的知识点等信息。这样可以方便自己回顾和总结,巩固所学的知识。 最后,可以将excel表格与其他相关资料进行整合,比如算法教材、目解析和学习笔记等。这样可以形成一个完整的学习档案,方便自己进行系统的学习和复习。 总之,bzoj计划excel的制定和记录可以帮助我们更加有条理和高效地进行学习和刷。通过合理安排学习目标和目选择策略,记录学习进度和思路,并整合其他学习资料,我们可以提高自己的解能力,并在bzoj上取得更好的成绩。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值