网安加·百家讲坛 | 宋荆汉:大模型生成代码的安全风险及应对

作者简介:宋荆汉,网安加学院院长,深圳创新方法研究会理事、深圳质量协会专家委员,网安加社区、质量实干派社区创始人。20年研发及管理经验,在中兴通讯、任子行网络,全志科技、汇金科技,担任研发管理高管,曾参与国家测试与安全类职业认证标准、国家软件安全开发相关标准的制定,对软件安全开发有比较深入的研究。曾为多家世界500强企业提供研发管理培训及咨询。

一、前言

近年来,人工智能技术的迅猛发展已将生成式AI(AIGC)推至软件开发的前沿阵地。诸如GitHub Copilot与ChatGPT等AIGC先锋,凭借深度学习模型的强大力量,正深刻改变着编程的方式。

它们不仅能深入剖析代码的语义逻辑,助力开发者迅速掌握遗留项目代码的维护,还能根据简短的提示,智能生成代码片段,极大地加速了开发效率的提升。

面对这一技术浪潮,主流的静态应用安全测试(SAST)厂商亦不甘落后,纷纷将AIGC大模型技术融入其产品中,力求在代码安全领域实现创新迭代。

不同于传统SAST工具仅止步于漏洞的发现,这些创新产品借助大模型的能力,不仅精准定位漏洞,更提供详尽的漏洞描述与针对性的修复建议。更令人瞩目的是,它们能直接生成修复后的代码,有效解决了“检测易,修复难”的痛点,让开发人员与安全团队之间的合作更加顺畅,彻底颠覆了“管杀不管埋”的旧有印象。

然而,正如任何技术革新都伴随着挑战与风险,AIGC在提升编程效率的同时,也悄然埋下了安全隐患。

本文旨在剖析AIGC生成代码所面临的主要安全风险,并探索一系列行之有效的应对措施,引导行业在享受技术红利的同时,也能稳健前行,确保软件系统的安全与可靠。

二、基于AIGC代码生成的安全风险

通过引入代码自动生成技术,工作效率显著提升,然而,这一进步也引发了对于生成代码安全性的深切关注。

据参考文献1中针对Copilot工具生成的代码进行的安全性研究报告揭示,研究团队精心设计了涵盖CWE(常见弱点枚举)中的18个大类下的54个具体场景,Copilot成功输出了1087个有效程序。

然而,在这些程序中,令人担忧的是,高达477个(占比43.88%)被发现含有CWE定义的漏洞。

进一步按编程语言细分,C语言的表现尤为堪忧:在25个测试场景中生成的516个程序中,竟有258个(占比高达50%)存在安全漏洞。

相比之下,Python虽然情况稍好,但在29个场景下的571个程序中ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值