自动对焦之1:图像清晰度评价
自动对焦技术的基本原理是电机驱动拍照系统,通过改变相机与被拍摄物之间的距离(物距),获得一组不同物距下的拍摄照片。通过对这组照片进行算法评价,获得清晰度评价曲线(如下图所示,参考文献[11] )。
曲线可以分为近焦区以及远焦区,近焦区的图片清晰度较高,曲线更陡峭;而远焦区图片相对模糊,曲线比较平滑。
一个好的清晰度评价算法,应保证清晰度曲线具有良好的无偏性、单峰性和灵敏性。
因此,图像清晰度评价算法是自动对焦技术中的重要一环。本文介绍了常用的评价算法及实现。
1.空间域评价方法
1.1 基于梯度的方法
基于梯度的方法物理意义很明确,即图像中像素的平均梯度越大,则边缘越锐利越清晰。
1.1.1 Tenengrad函数
Te