机器学习基础-概述:定义、开发流程、术语、分类

机器学习定义

If the system reliably improves its performance P at task T, following experience E.

针对任务T,性能 P 随着经验 E 而不断增加

机器学习项目开发流程

术语

数据集类型:表格数据、文本、图像等

特征、属性、维度;标签

训练集:被学习的数据

测试集:用来评估学习效果的数据

泛化: 一个机器学习模型能够对没见过的数据做出准确判断

过拟合:训练集上表现良好但不能泛化到新数据集上

欠拟合:在训练集上模型就表现很差

损失函数:单样本的模型计算结果与实际值的差异程度。损失函数越小,模型越好

成本函数( 代价函数):度量全部样本集的平均误差,成本函数越小,模型训练效果越好

机器学习方法分类

基于数据集是否有标记的分类

监督学习、无监督学习、半监督学习、强化学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值