Day39|动态规划2

不同路径I

思路:定义一个二维的dp数组

1.dp[i][j]表示从(0,0)到(i,j)的路径条数

2.dp[i][j] = dp[i-1][j] + dp[i][j-1];从上一状态得到当前状态方程

两个方向过来当前位置,是两条路径,路径条数,不是步数

3.初始化

dp[i][0] = 1;

dp[0][j] = 1;

4.确定遍历顺序

从上到下 或 从左到右

5.举例推导,尝试带入 3,7,手动打印

class Solution{
public:
  int uniquePaths(int m, int n){
   vector<vector<int>>dp(m,vector<int>(n,0));
   for(int i = 0; i < m; i++)dp[i][0] = 1;
   for(int j = 0; j < n; j++)dp[0][j] = 1;
   for(int i = 1; i < m; i++){
      for(int j = 1; j < n; j++){
         dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
      }
   }
   return dp[m - 1][n - 1];
  }
};

优化:

class Solution{
public:
  int uniquePaths(int m, int n){
      vector<int> dp(n);
      for(int i=0; i < n; i++)dp[i] = 1;
      for(int j=1; j < m; j++){
         for(int i = 1l i < n; i++){
            dp[i] += dp[i-1];
         }
      }
      return dp[n-1];
  }
};

 

不同路径II

思路分析:加入了障碍,标记对应的dp table,保持初始值(0)即可。

1.dp[i][j]表示从(0,0)到(i,j)的不同路径数

2.dp[i][j] = dp[i - 1][j] + dp[i][j -1].

如果(i,j)就是障碍的话,应该保持初始状态(初始状态为0)

if (obstacleGrid[i][j] == 0) { // 当(i, j)没有障碍的时候,再推导dp[i][j]
    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}

3.初始化

vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) dp[i][0] = 1;
for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) dp[0][j] = 1;

obs为0时才进行,为1不进行

4.遍历顺序:从左到右,从上到下

for (int i = 1; i < m; i++) {
    for (int j = 1; j < n; j++) {
        if (obstacleGrid[i][j] == 1) continue;
        dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
    }
}

5.打印debug

class Solution{
public:
   int uniquePathWithObtacles(vector<vector<int>>&obsracleGrid){
      int m = obstacleGrid.size();
      int n = obstacleGrid[0].size();
   if(obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1)//终点或起点出现障碍
   return 0;
     vector<vector<int>>dp(m,vector<int>(n,0));
     for(int i = 0; i < m && obstacleGrid[i][0] == 0; i++)dp[i][0] = 1;
     for(int j = 0; j < n && obstacleGrid[0][j] == 0; j++)dp[0][j] = 1;
     for(int i = 1; i < m; i++){
      for(int j = 1;j < n; j++){
         if(obstacleGrid[i][j] == 1)continue;
         dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
      }
     }
     return dp[m - 1][n - 1];

   }
};

优化:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if (obstacleGrid[0][0] == 1)
            return 0;
        vector<int> dp(obstacleGrid[0].size());
        for (int j = 0; j < dp.size(); ++j)
            if (obstacleGrid[0][j] == 1)
                dp[j] = 0;
            else if (j == 0)
                dp[j] = 1;
            else
                dp[j] = dp[j-1];

        for (int i = 1; i < obstacleGrid.size(); ++i)
            for (int j = 0; j < dp.size(); ++j){
                if (obstacleGrid[i][j] == 1)
                    dp[j] = 0;
                else if (j != 0)
                    dp[j] = dp[j] + dp[j-1];
            }
        return dp.back();
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值