线上监控怎么做?

image.png

监控,是一个生产服务必不可少的组成部分,少了监控的产品,无异于在互联网上“裸奔”。在一个产品正式上线之前,就应该做好相关的监控规划工作。
关于监控,就有一些我们经常被忽略的陷阱和值得思量的好方向。SRE成长记经查阅资料梳理了一下,一起来看看吧!

监控的陷阱

1. 对监控工具盲目崇拜

监控不是一个单一的问题,而是涉及多方面的复杂问题。市面上各种监控工具五花八门,所有的工具都能满足自己的实际需求。要在众多工具中找到最适合自己的监控工具和方式,如果使用多种工具,尽量使用最小工具集。
同时,在有条件的团队,可根据需要,研发自己量身打造的专用工具。

2. 监控岗位化

监控不是一份工作,而是一种技能,团队中每一位成员都需要在一定程度上掌握这项技能。
可观测性团队(构建自服务监控工具,并将其作为服务提供给给其他团队)负责创建并维护监控工具,但不应该负责监控某个具体的应用程序、配置告警信息等。
公司监控的责任不能完全推给一个人来承担。

3. 为了“有监控”而监控

监控系统应该是有效的,不能为了证明自己有监控而部署监控系统。无效的监控系统可能会比没有监控还糟糕。
哪些是无效的监控系统?
1)虽然做了监控,如系统负载、CPU、内存等,但是服务还是在不知道什么时候、什么原因的情况下停止了运行;
2)习惯性地忽略告警信息,因为它们多数时候是误报或者无需处理;
3)每隔5分钟或者更短的时间就要检查系统的指标;
4)没有存储历史指标数据;
5)虽然做了监控,但是无人看得懂;

4. 把监控当拐杖

虽然监控对于提醒你注意问题非常有用,但是别忘了更重要的是解决问题。
如果发现自己面对的是一个问题层出的服务,相比层层添加更多的监控来说,更应该做的是提升服务的代码质量、服务稳定和弹性。
更多的监控无法修复有效的系统,也不会改善现有的情形。

5. 监控缺乏自动化

监控配置应该尽量做成自动化,减少配置监控项的繁琐。
如果服务在每次扩容后,都需要花费大量的时间在监控配置上,可能就不会有太多精力去思考怎么监控更多的东西。

监控的建议

1. 可组合监控可能比一体化监控效率更好、更灵活

可组合监控:使用多个专门的工具,并且将它们松散地组合在一起,形成一个监控平台,每个工具各司其职。如果随着业务的发展,某个工具不再满足需求,可以替换掉这个工具,而非替换整个平台。
一个监控系统一般包含这些方面:
数据采集:采集监控指标、日志等数据,数据采集组件采集数据一般有2种方式——推送(如zabbix主动模式)或拉取(如zabbix被动模式、Prometheus等);
数据存储:将采集到的数据存储到数据库中,如influxdb等;
可视化:将监控数据以可视化的图标等方式展示出来,如grafana等;
分析和报告:根据监控数据,对应用的可用性、容量等进行分析和报告,如SLA;
告警:发送问题告警信息给系统管理员;

2. 从用户角度监控能产生更高效的可见性

如果当你收到一份重要的告警,你需要跟相关同事确认这个告警信息是否影响到用户使用,那么你应该考虑在用户端加设置监控告警。
添加监控的最佳地点首先是用户与应用程序交互的点。用户不会关心应用程序实现的细节,而会关心应用程序是否可用,首先要从他们的角度看问题。
运行监控最有效的事情之一就是监控HTTP响应码,这些监控虽然不会告诉你出了什么问题,但是会告诉你问题出现了,并且正在影响用户。

3. 尽可能购买工具,而不是自己构建工具

相比购买工具,组建公司自由的可观测性团队的人力成本、工具的专业性而言,可能购买工具是个更好的选择。购买专业的监控工具,你可以节省出更多时间去关注自身服务建设。

4. 不断持续改善监控

监控不是一层不变,随着业务、程序架构的变迁和更迭,监控也应持续改善适应新的需求。

<think>好的,用户现在想了解如何实现软件的线上告警功能。我需要先理清用户的需求,然后根据提供的引用内容来构建一个系统的回答方案。 首先,用户的问题是关于线上告警的实现方案。根据引用中的信息,比如引用[1]提到告警的实质是将人当作服务使用,确保告警有效而不是变成干扰。引用[2]提到了集成各种监控平台的方法,包括Zabbix、Prometheus等,以及通过API和邮箱集成。引用[3]详细说明了Zabbix结合DeepSeek大模型进行智能分析的架构,这可能是一个高级应用案例。引用[4]则讨论了后端监控的具体流程,比如错误检测频率和报警触发条件。 接下来,我需要将这些信息整合成一个结构清晰的步骤。首先,确定监控指标,这是基础,因为不同的系统需要监控不同的数据。然后,选择监控工具,比如Zabbix或Prometheus,这些工具能够实时收集数据。接着,设置告警规则,确保不会产生过多无效告警,这一点引用[1]特别强调了避免无意义告警的重要性。然后,集成通知渠道,如邮件、短信、Slack等,引用[2]提到可以通过API或邮箱集成。最后,持续优化告警策略,包括智能分析和分级处理,引用[3]中的案例展示了如何结合AI进行分析,引用[4]中的分级别报警也是一个参考点。 用户可能的身份是软件开发者或运维人员,他们需要从零开始搭建告警系统,或者优化现有的系统。他们可能关心具体的步骤和工具选择,以及如何避免常见的陷阱,比如告警疲劳。因此,在回答中需要提供具体的工具示例和实现步骤,同时强调最佳实践,比如动态阈值和告警合并。 另外,用户提供的引用中有多个具体的案例,比如Zabbix的集成和错误累积报警机制,这些可以作为实际例子来增强回答的可信度。例如,在步骤四中提到的邮件和短信报警,可以引用[4]中的例子,说明如何根据错误次数分级别触发不同报警方式。 可能用户没有明确提到的深层需求是如何高效处理大量告警,避免漏掉重要信息。因此,在优化部分需要提到智能分析和自动化处理,如引用[3]中的DeepSeek集成,这样可以减少人工干预,提高响应速度。 最后,确保回答结构清晰,分步骤说明,并附上相关引用作为支持。同时,生成的问题要围绕用户可能进一步关心的点,比如工具对比、规则设计、性能优化等,帮助用户深入理解。</think>### 软件线上告警功能实现方案 #### 一、核心实现步骤 1. **监控指标定义** - 基础指标:CPU使用率$ \geq 80\%$,内存占用$ \geq 90\%$,磁盘空间$ \leq 10\%$ - 业务指标:API响应时间$ > 500ms$,错误率$ \geq 5\%$,交易成功率$ \leq 95\%$ [^4] - 自定义指标:如队列积压量$ > 1000$,数据库连接数$ \geq 200$ 2. **监控工具选型** - 开源方案:Zabbix(支持多协议)、Prometheus(云原生首选) - 云服务方案:AWS CloudWatch、阿里云ARMS - 日志分析:ELK Stack(错误日志模式识别)[^3] 3. **告警规则配置** - 阈值规则:`连续3次超过阈值触发` - 复合规则:`(CPU > 80%) && (内存 > 90%)` - 动态基线:`当前值 > 历史均值 + 3σ` [^1] 4. **通知渠道集成** ```python # 伪代码示例:分级通知 def send_alert(level, message): if level == 'WARNING': send_email(recipients, message) # 引用[2] elif level == 'CRITICAL': send_sms(ops_team, message) # 引用[4] trigger_webhook(chatbot) # 引用[3] ``` #### 二、关键技术实现 $$ 告警有效性 = \frac{需人工干预告警}{总告警数} \times 100\% \quad (目标值 \geq 90\%) $$ 1. **告警收敛策略** - 时间窗口合并:5分钟内相同告警合并 - 拓扑关联:数据库异常连带关联应用服务告警 - 自动恢复检测:异常解除后自动关闭告警[^1] 2. **智能分析层** - 根因分析:通过服务拓扑图定位故障源 - 预测告警:基于时间序列预测$ y_{t+1} = \alpha y_t + (1-\alpha)\hat{y}_t $ - 知识图谱:历史故障库匹配(如Zabbix+DeepSeek方案)[^3] #### 三、实施最佳实践 1. **分级策略示例** | 等级 | 响应时间 | 通知方式 | 升级机制 | |--------|----------|-------------------|-------------------| | P4 | <30分钟 | 邮件 | 24小时未解决升级 | | P2 | <15分钟 | 短信+电话 | 2小时未解决升级 | 2. **有效性优化** - 设置维护窗口:$ \text{北京时间} 02:00-04:00$不触发低级别告警 - 告警疲劳检测:同一接收人$ \leq 5$条/小时 - 闭环验证:告警处理完成后自动触发健康检查$ f(x)=\int_{a}^{b} \text{health\_check}(t)dt $
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值