Android 程序员必须知道的8个算法及其时间复杂度讲解




插入排序的中心思想:插入
选择排序的中心思想:取第一个值
冒泡排序的中心思想:交换
归并排序的中心思想:分治发




插入排序的中心思想:插入
选择排序的中心思想:取第一个值
冒泡排序的中心思想:交换
归并排序的中心思想:分治发

英文名称
Swap:交换


<一>直接插入排序(InsertSort )

   (1)基本思想:在要排序的一组数中,假设前面(n-1) [n>=2] 个数已经是排

好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数

也是排好顺序的。如此反复循环,直到全部排好顺序。


      总结:在有序的数组中,一个一个插入到数组里面



java代码:非常简单,2重遍历

int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};

int temp=0;

for(int i=1;i<a.length;i++){

    int j=i-1;

    temp=a[i];

    for(;j>=0&&temp<a[j];j--){

        a[j+1]=a[j];                       //将大于temp的值整体后移一个单位

    }

    a[j+1]=temp;

}

for(int i=0;i<a.length;i++)

    System.out.println(a[i]);

<二>希尔排序(Shell sort 最小增量排序)

1 )基本思想:算法先将要排序的一组数按某个增量 d n/2,n 为要排序数的个数)分成若干组,每组中记录的下标相差 d. 对每组中全部元素进行直接插入排序,
然后再用一个较小的增量( d/2 )对它进行分组,在每组中再进行直接插入排序。当增量减到 1 时,进行直接插入排序后,排序完成。

总结:把第二个数组插入到第一个数组,这样第一个数组和第二个数组合并成了一个数组(分组和Gap),然后让第三个数组往里面插入。
最终合并成了一个数组


不稳定的排序说明:




是否稳定
需要注意一下的是,图中有两个相等数值的元素   5   和   5   。我们可以清楚的看到,在排序过程中, 两个元素位置交换了

所以,希尔排序是不稳定的算法。




java代码步骤:(多种写法)
1.排序到最后增量为1,退出循环
2.3重循环


public ShellSort(){

    int a[]={1,54,6,3,78,34,12,45,56,100};
    double d1=a.length;

    int temp=0;

    while(true){

        d1= Math.ceil(d1/2);

        int d=(int) d1;

        for(int x=0;x<d;x++){

            for(int i=x+d;i<a.length;i+=d){

                int j=i-d;

                temp=a[i];

                for(;j>=0&&temp<a[j];j-=d){

                    a[j+d]=a[j];

                }

                a[j+d]=temp;

            }

        }

        if(d==1)

            break;

    }

    for(int i=0;i<a.length;i++)

        System.out.println(a[i]);

}


<三>简单选择排序

1基本思想: 选择排序:比如在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟遍历剩下的N-1个数据,

找出其中最小的数值与第二个元素交换......第N-1趟遍历剩下的2个数据,找出其中最小的数值与第N-1个元素交换,至此选择排序完成。


时间复杂度:n+n-1_………………+1,和插入排序一样,但是事不稳定的。


稳定性:不稳定 (比如序列【5, 5, 3】第一趟就将第一个[5]与[3]交换,导致第一个5挪动到第二个5后面)


总结:找到最小的,把最小的在首位,二次……………………,一个一个排序





java代码比较简单:
public static void selectSort(){

    int a[]={1,54,6,3,78,34,12,45};

    int position=0;

    for(int i=0;i<a.length;i++){

        int j=i+1;

        position=i;

        int temp=a[i];

        for(;j<a.length;j++){

            if(a[j]<temp){

                temp=a[j];

                position=j;

            }

        }

        a[position]=a[i];

        a[i]=temp;

    }

    for(int i=0;i<a.length;i++)

        System.out.println(a[i]);

}


<四>堆排序(Heap Sort

(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。(2种条件只需要符合一种)

堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。

由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)

每个节点都大(小)于它的两个子节点,当每个节点都大于等于它的两个子节点时,就称为大顶堆,也叫堆有序; 当每个节点都小于等于它的两个子节点时,就称为小顶堆。

完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。


总结;得到第一个根节点,然后交换位置,调整位置


时间复杂度

        堆排序的时间复杂度,主要在初始化堆过程和每次选取最大数后重新建堆的过程;

          初始化建堆过程时间:O(n)

        推算过程:

        首先要理解怎么计算这个堆化过程所消耗的时间,可以直接画图去理解;

        假设高度为k,则从倒数第二层右边的节点开始,这一层的节点都要执行子节点比较然后交换(如果顺序是对的就不用交换);倒数第三层呢,则会选择其子节点进行比较和交换,如果没交换就可以不用再执行下去了。如果交换了,那么又要选择一支子树进行比较和交换;

        那么总的时间计算为:s = 2^( i - 1 )  *  ( k - i );其中 i 表示第几层,2^( i - 1) 表示该层上有多少个元素,( k - i) 表示子树上要比较的次数,如果在最差的条件下,就是比较次数后还要交换;因为这个是常数,所以提出来后可以忽略;

        S = 2^(k-2) * 1 + 2^(k-3)*2.....+2*(k-2)+2^(0)*(k-1)  ===> 因为叶子层不用交换,所以i从 k-1 开始到 1;

        这个等式求解,我想高中已经会了:等式左右乘上2,然后和原来的等式相减,就变成了:

        S = 2^(k - 1) + 2^(k - 2) + 2^(k - 3) ..... + 2 - (k-1)

        除最后一项外,就是一个等比数列了,直接用求和公式:S = {  a1[ 1-  (q^n) ] }  / (1-q);

        S = 2^k -k -1;又因为k为完全二叉树的深度,所以 (2^k) <=  n < (2^k  -1 ),总之可以认为:k = logn (实际计算得到应该是 log(n+1) < k <= logn );

        综上所述得到:S = n - longn -1,所以时间复杂度为:O(n)


        更改堆元素后重建堆时间:O(nlogn)

        推算过程:

       1、循环  n -1 次,每次都是从根节点往下循环查找,所以每一次时间是 logn,总时间:logn(n-1) = nlogn  - logn ;

    

       综上所述:堆排序的时间复杂度为:O(nlogn)





实例:

初始序列:46,79,56,38,40,84

建堆:(从最下面开始,往上进行交换位置)

 然后需要构造初始堆,则从最后一个非叶节点开始调整,调整过程如下:

给定一个整形数组a[]={16,7,3,20,17,8},对其进行堆排序。

    首先根据该数组元素构建一个完全二叉树,得到






依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。


成立堆之后进行交换:交换的时候不满足堆条件,就要不断进行调整






最后的效果图:从上到下,从左到右的排序依次大小





代码实现:代码逻辑复杂,建立堆和(交换堆顶和最后一个元素)


public static  void heapSort(int[] a){




    System.out.println("开始排序");

    int arrayLength=a.length;

    //循环建堆

    for(int i=0;i<arrayLength-1;i++){

        //建堆

        buildMaxHeap(a,arrayLength-1-i);

        //交换堆顶和最后一个元素

        swap(a,0,arrayLength-1-i);

        System.out.println(Arrays.toString(a));

    }

}



private  static void swap(int[] data, int i, int j) {

    // TODO Auto-generated method stub

    int tmp=data[i];

    data[i]=data[j];

    data[j]=tmp;

}

//data数组从0lastIndex建大顶堆

private static void buildMaxHeap(int[] data, int lastIndex) {

    // TODO Auto-generated method stub

    //lastIndex处节点(最后一个节点)的父节点开始

    for(int i=(lastIndex-1)/2;i>=0;i--){

        //k保存正在判断的节点

        int k=i;

        //如果当前k节点的子节点存在

        while(k*2+1<=lastIndex){

            //k节点的左子节点的索引

            int biggerIndex=2*k+1;

            //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在

            if(biggerIndex<lastIndex){

                //若果右子节点的值较大

                if(data[biggerIndex]<data[biggerIndex+1]){

                    //biggerIndex总是记录较大子节点的索引

                    biggerIndex++;

                }

            }

            //如果k节点的值小于其较大的子节点的值

            if(data[k]<data[biggerIndex]){

                //交换他们

                swap(data,k,biggerIndex);

                //biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值

                k=biggerIndex;

            }else{

                break;

            }

        }

    }

}


<五 >冒泡排序(Bubble Sort)===========最重要,需要默写代码

(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。



步骤:

冒泡排序算法的运作如下:

  

  1.  比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2.  对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
  3.  针对所有的元素重复以上的步骤,除了最后一个。
  4.  持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

    冒泡第一轮得到最小的值,然后是第二小的值:


冒泡排序的过程图:





举例说明:要排序数组:int[] arr={6,3,8,2,9,1};   

第一趟排序:

    第一次排序:63比较,6大于3,交换位置:  3  6  8  2  9  1

    第二次排序:68比较,6小于8,不交换位置:3  6  8  2  9  1

    第三次排序:82比较,8大于2,交换位置:  3  6  2  8  9  1

    第四次排序:89比较,8小于9,不交换位置:3  6  2  8  9  1

    第五次排序:91比较:9大于1,交换位置:  3  6  2  8  1  9

    第一趟总共进行了5次比较, 排序结果:      3  6  2  8  1  9

---------------------------------------------------------------------

第二趟排序:

    第一次排序:36比较,3小于6,不交换位置:3  6  2  8  1  9

    第二次排序:62比较,6大于2,交换位置:  3  2  6  8  1  9

    第三次排序:68比较,6大于8,不交换位置:3  2  6  8  1  9

    第四次排序:81比较,8大于1,交换位置:  3  2  6  1  8  9

    第二趟总共进行了4次比较, 排序结果:      3  2  6  1  8  9

---------------------------------------------------------------------

第三趟排序:

    第一次排序:32比较,3大于2,交换位置:  2  3  6  1  8  9

    第二次排序:36比较,3小于6,不交换位置:2  3  6  1  8  9

    第三次排序:61比较,6大于1,交换位置:  2  3  1  6  8  9

    第二趟总共进行了3次比较, 排序结果:         2  3  1  6  8  9

---------------------------------------------------------------------

第四趟排序:

    第一次排序:23比较,2小于3,不交换位置:2  3  1  6  8  9

    第二次排序:31比较,3大于1,交换位置:  2  1  3  6  8  9

    第二趟总共进行了2次比较, 排序结果:        2  1  3  6  8  9

---------------------------------------------------------------------

第五趟排序:

    第一次排序:21比较,2大于1,交换位置:  1  2  3  6  8  9

    第二趟总共进行了1次比较, 排序结果:  1  2  3  6  8  9

---------------------------------------------------------------------

最终结果:1  2  3  6  8  9


由此可见:N个数字要排序完成,总共进行N-1趟排序,每i趟的排序次数为(N-i)次,


时间复杂度;


如果很不幸我们的数据是反序的,则需要进行n-1趟排序。每趟排序要进行n-i次比较(1≤i≤n-1),且每次比较都必须移动记录三次来达到交换记录位置。在这种情况下,比较和移动次数均达到最大值:冒泡排序的最坏时间复杂度为:O(n2) 。

综上所述:冒泡排序总的平均时间复杂度为:O(n2) 。


    结论:4个数列入:52比较的次数:3 次,59比较的次数:2  ,59:1次相邻交换


根据前面的总结:

代码写法:外层循环控制排序趟数  N-1,内层循环控制每一趟排序多少次  N-i


public static  void bubbleSort(){
    int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
    int temp=0;
    for(int i=0;i<a.length-1;i++){//外层循环控制排序趟数
        for(int j=0;j<a.length-1-i;j++){//内层循环控制每一趟排序多少次
            if(a[j]>a[j+1]){//交换位置
                temp=a[j];//把最大值给了临时变量
                a[j]=a[j+1];//把小的值
                a[j+1]=temp;//把最大值给
            }
        }
    }
    for(int i=0;i<a.length;i++)
        System.out.println(a[i]);
}

有些追求完美的人就会思考,冒泡排序能不能优化呢?
答案是能的。如何优化的文章
优化原理::事实上可以添加一个标志位就可以搞定这个问题:

<六>快速排序Quicksort

1快速排序是对冒泡排序的一种改进   。基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,

此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。


该基准点的选取可能影响快速排序的效率 以后采用递归的方式分别对前半部分和后半部分排序,当前半部分和后半部分均有序时该数组就自然有序了。

第一次演示图


每次从无序的序列中找出一个数作为中间点(可以把第一个数作为中间点),然后把小于中间点的数放在中间点的左边,把大于中间点的数放在中间点的右边;对以上过程重复log(n)次得到有序的序列。


快速排序的时间复杂性分析:排序的大体如下图所示,假设有1到8代表要排序的数,快速排序会递归log(8)=3次,每次对n个数进行一次处理,所以他的时间复杂度为n*log(n)。

所以排序问题的时间复杂度可以认为是对排序数据的总的操作次数。


时间复杂度的计算和推理:



static int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};

public  static void quickSort(){

    quick(a);

    for(int i=0;i<a.length;i++)
        System.out.println("-----Quick---"+a[i]);

}

public static int getMiddle(int[] list, int low, int high) {

    int tmp = list[low];    //数组的第一个作为中轴

    while (low < high) {

        while (low < high && list[high] >= tmp) {

            high--;

        }

        list[low] = list[high];   //比中轴小的记录移到低端

        while (low < high && list[low] <= tmp) {

            low++;

        }

        list[high] = list[low];   //比中轴大的记录移到高端

    }

    list[low] = tmp;              //中轴记录到尾

    return low;                   //返回中轴的位置

}

public static void _quickSort(int[] list, int low, int high) {

    if (low < high) {

        int middle = getMiddle(list, low, high);  //list数组进行一分为二

        _quickSort(list, low, middle - 1);        //对低字表进行递归排序

        _quickSort(list, middle + 1, high);       //对高字表进行递归排序

    }

}

public static void quick(int[] a2) {

    if (a2.length > 0) {    //查看数组是否为空

        _quickSort(a2, 0, a2.length - 1);

    }

}

其实快速排序是基于一种叫做“二分”的思想。

结论:   排完第一次,得到 中间值,比左边的数列要大,比右边的数列要小。 左右交换



<七>归并排序   (Merge sort
  归并排序 是一类与插入排序、交换排序、选择排序不同的另一种排序方法。归并的含义是将两个或两个以上的有序表合并成一个新的有序表。
归并排序有多路归并排序、两路归并排序 , 可用于内排序,也可以用于外排序。这里仅对内排序的两路归并方法进行讨论。 

总结:2个数组排序:通过插入排序的方式



该算法是采用 分治法(Divide and Conquer)

时间复杂度:

归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。
因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。


代码实现
1.找出中间的索引
2.对左边数组递归
3.对右边的数组递归
3.合并

int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
public  MerginSort(){
    sort(a,0,a.length-1);
    for(int i=0;i<a.length;i++)
        System.out.println(a[i]);
}
public void sort(int[] data, int left, int right) {
    // TODO Auto-generated method stub
    if(left<right){
        //找出中间索引
        int center=(left+right)/2;
        //对左边数组进行递归
        sort(data,left,center);
        //对右边数组进行递归
        sort(data,center+1,right);
        //合并
        merge(data,left,center,right);

    }
}
public void merge(int[] data, int left, int center, int right) {
    // TODO Auto-generated method stub
    int [] tmpArr=new int[data.length];
    int mid=center+1;
    //third记录中间数组的索引
    int third=left;
    int tmp=left;
    while(left<=center&&mid<=right){
        //从两个数组中取出最小的放入中间数组
        if(data[left]<=data[mid]){
            tmpArr[third++]=data[left++];
        }else{
            tmpArr[third++]=data[mid++];
        }
    }
    //剩余部分依次放入中间数组
    while(mid<=right){
        tmpArr[third++]=data[mid++];
    }
    while(left<=center){
        tmpArr[third++]=data[left++];
    }
    //将中间数组中的内容复制回原数组
    while(tmp<=right){
        data[tmp]=tmpArr[tmp++];
    }
    System.out.println(Arrays.toString(data));
}




<8>基数排序(Radix sort属于“分配式排序”(distribution sort))
 
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
 
 
总结:个位数排,十位数排,百位数排,按照HashMap的形式一样。


int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51};

public RadixSort(){

    sort(a);

    for(int i=0;i<a.length;i++)

        System.out.println(a[i]);

}

public  void sort(int[] array){



    //首先确定排序的趟数;

    int max=array[0];

    for(int i=1;i<array.length;i++){

        if(array[i]>max){

            max=array[i];

        }

    }



    int time=0;

    //判断位数;

    while(max>0){

        max/=10;

        time++;

    }



    //建立10个队列;

    List<ArrayList> queue=new ArrayList<ArrayList>();

    for(int i=0;i<10;i++){

        ArrayList<Integer> queue1=new ArrayList<Integer>();

        queue.add(queue1);

    }



    //进行time次分配和收集;

    for(int i=0;i<time;i++){



        //分配数组元素;

        for(int j=0;j<array.length;j++){

            //得到数字的第time+1位数;

            int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i);

            ArrayList<Integer> queue2=queue.get(x);

            queue2.add(array[j]);

            queue.set(x, queue2);

        }

        int count=0;//元素计数器;

        //收集队列元素;

        for(int k=0;k<10;k++){

            while(queue.get(k).size()>0){

                ArrayList<Integer> queue3=queue.get(k);

                array[count]=queue3.get(0);

                queue3.remove(0);

                count++;

            }

        }

    }



}

二分查找:
算法导论:



插入排序的中心思想:插入
选择排序的中心思想:取第一个值
冒泡排序的中心思想:交换
归并排序的中心思想:分治发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值