数论 欧拉函数+模板

概念

欧拉函数:对正整数 n n n,与 n n n 互质并且小于等于 n n n 的正整数的个数(因此 φ ( 1 ) = 1 φ(1) = 1 φ(1)=1

欧拉函数用 φ φ φ 表示,又称为 φ φ φ 函数

性质

1、通式
在这里插入图片描述
其中p1, p2……pn为x的所有质因数,x是不为0的整数。

2、 φ ( 1 ) = 1 φ(1) = 1 φ(1)=1
因为1与1互质

3、如果n为质数,则 φ ( n ) = n − 1 φ(n) = n - 1 φ(n)=n1
因为 n n n 与它本身之外的数字互质

4、欧拉函数是积性函数,如果 n n n m m m 互质,则有 f ( n m ) = f ( n ) f ( m ) f(nm) = f(n)f(m) f(nm)=f(n)f(m)

5、特殊性质:如果n是奇质数,那么 φ ( 2 n ) = φ ( n ) φ(2n) = φ(n) φ(2n)=φ(n)

6、如果 p p p是质数, n n n p p p k k k 次幂,即 n = p k n = p^k n=pk,则有
在这里插入图片描述
因为除了 p p p 的倍数外,其他数都跟 n n n 互质。

7、小于n的数中,与n互质的数的总和为 φ ( n ) ∗ n 2 ( n > 1 ) \frac{φ(n)*n}{2} (n>1) 2φ(n)n(n>1)

8、 n = ∑ d ∣ n φ ( d ) n = ∑ _{d∣n} φ(d) n=dnφ(d),即 n n n的因数(包括1和它自己)的欧拉函数之和等于 n n n

9、当 n > 2 n > 2 n>2时, φ ( n φ(n φ(n)是偶数。

10、如果a,p互质,那么一定有:
a φ ( p ) ≡ 1 ( m o d    p ) a^{φ( p )} ≡ 1 (mod \; p) aφ(p)1(modp)
上式在p为质数的时候,有
a p − 1 ≡ 1 ( m o d    p ) a^{p - 1}≡ 1 (mod \; p) ap11(modp)

即费马小定理

求欧拉函数的方法

直接根据公式求欧拉函数

//euler(x) = x*(1 - 1/p1)*(1 - 1/p2)*(1 - 1/p3)...(1 - 1/pn)   p1 p2..是x的所有的质因子且各不相同  x != 0
//**质因子之和是euler(x)*x / 2
#include <iostream>
using namespace std;
int Euler(int n)
{
    int res = n , a = n;
    for(int i = 2 ; i*i <= a ; i++)
        if(a % i == 0)  //i一定是素数
        {
            res = res / i * (i - 1);  //根据公式
            while(a % i == 0)  //把相同的除数排除
                a /= i;
        }
    if(a > 1)  //最后只剩下 小于4的素数  或者n本身就是素数
        res = res / a *(a - 1);
    return res;
}
int main()
{
    int n;
    while(cin >> n)
        cout << Euler(n) << endl;
}

用埃筛求欧拉函数
时间复杂度O(nloglogn)

void euler(int n)
{
    for (int i = 1; i <= n; ++i) 
    	phi[i] = i;
    for (int i = 2; i <= n; ++i)
        if (phi[i] == i)//这代表i是质数
            for (int j = i; j <= n; j += i)
                phi[j] = phi[j] / i * (i - 1);//把i的倍数更新掉
}

用欧拉筛求欧拉函数

void euler(int n)
{
	phi[1] = 1;//1要特判 
	for (int i = 2; i <= n; ++i)
	{
		if (flag[i] == 0)//这代表i是质数 
		{
			prime[++num] = i;
			phi[i] = i - 1;
		}
		for (int j = 1; j <= num && prime[j] * i <= n; ++j)//经典的欧拉筛写法 
		{
			flag[i * prime[j]] = 1;//先把这个合数标记掉 
			if (i % prime[j] == 0)
			{
				phi[i * prime[j]] = phi[i] * prime[j];//若prime[j]是i的质因子,则根据计算公式,i已经包括i*prime[j]的所有质因子 
				break;//经典欧拉筛的核心语句,这样能保证每个数只会被自己最小的因子筛掉一次 
			}
			else phi[i*prime[j]]=phi[i]*phi[prime[j]];//利用了欧拉函数是个积性函数的性质 
		}
	}
}

参考来源

百度百科
https://baike.baidu.com/item/%E6%AC%A7%E6%8B%89%E5%87%BD%E6%95%B0/1944850?fr=aladdin
博客
https://blog.csdn.net/liuzibujian/article/details/81086324
博客
https://www.cnblogs.com/Recoder/p/4810972.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值