【数论】欧拉函数

欧拉函数:对正整数 n n ,欧拉函数是小于等于 n 的数中与 n n 互质的数的个数。

欧拉函数又称 ϕ 函数,例如 ϕ(8)=4 ϕ ( 8 ) = 4 ,因为在小于 8 8 的数中,有 1,3,5,7 与其互质。

欧拉函数的三条性质:

  • 如果 n n 为某一素数 p ,则: ϕ(p)=p1 ϕ ( p ) = p − 1

    证明:显然。

  • 如果 n n 为某一素数 p 的幂次 pa p a ,则: ϕ(pa)=(p1)pa1 ϕ ( p a ) = ( p − 1 ) ∗ p a − 1

    证明:比 pa p a 小的数显然有 pa1 p a − 1 个。其中,能被 p p 整除的数均可被表示为 pt(t=1,2,,pa11), 即有 pa11 p a − 1 − 1 个这样的数可以被 p p 整除,从而不与 pa 互质,取它的补集,也就是我们想要的与 pa p a 互质的数,即 ϕ(pa)=(pa1)(pa11)=(p1)pa1 ϕ ( p a ) = ( p a − 1 ) − ( p a − 1 − 1 ) = ( p − 1 ) ∗ p a − 1

  • 如果 n n 是任意两个互质的数 a,b 的乘积,则: ϕ(ab)=ϕ(a)ϕ(b) ϕ ( a ∗ b ) = ϕ ( a ) ∗ ϕ ( b )

    证明:在比 ab a ∗ b 小的数中,只有既于 a a 互质,又与 b 互质的数才与 ab a ∗ b 互质,显然有 ϕ(a)ϕ(b) ϕ ( a ) ∗ ϕ ( b ) 个,即 ϕ(ab)=ϕ(a)ϕ(b) ϕ ( a ∗ b ) = ϕ ( a ) ∗ ϕ ( b )

由欧拉函数的这三条性质,当 n n 表示为素数幂乘积即 n=p1a1p2a2pkak 时,我们有:

ϕ(n)=====ϕ(pa11pa22pakk)ϕ(pa11)ϕ(pa22)ϕ(pakk)(p11)(p21)(pk1)pa111pa212pak1kpa11pa22pakkp11p1p21p2pk1pkn(11p1)(11p2)(11pk) ϕ ( n ) = ϕ ( p 1 a 1 ∗ p 2 a 2 ∗ ⋯ ∗ p k a k ) = ϕ ( p 1 a 1 ) ∗ ϕ ( p 2 a 2 ) ⋯ ∗ ϕ ( p k a k ) = ( p 1 − 1 ) ∗ ( p 2 − 1 ) ∗ ⋯ ∗ ( p k − 1 ) ∗ p 1 a 1 − 1 ∗ p 2 a 2 − 1 ∗ ⋯ ∗ p k a k − 1 = p 1 a 1 ∗ p 2 a 2 ∗ ⋯ ∗ p k a k ∗ p 1 − 1 p 1 ∗ p 2 − 1 p 2 ∗ ⋯ ∗ p k − 1 p k = n ∗ ( 1 − 1 p 1 ) ∗ ( 1 − 1 p 2 ) ∗ ⋯ ∗ ( 1 − 1 p k )

这就是计算一个数的欧拉函数的方法。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值