数论 狄利克雷卷积(狄利克雷乘积)

假设现在有两个数论函数 f ( n ) 、 g ( n ) f(n)、g(n) f(n)g(n),那么它们的狄利克雷卷积(乘积)也是一个数论函数。
记他们的狄利克雷卷积为 h ( n ) h(n) h(n),则有: h ( n ) = ∑ d ∣ n , d > 0 f ( d ) g ( n d ) h(n) = ∑_{d|n,d>0}f(d)g(\frac{n}{d}) h(n)=dn,d>0f(d)g(dn)
简记为 h ( n ) = f ( n ) ∗ g ( n ) h(n)=f(n)*g(n) h(n)=f(n)g(n)

狄利克雷卷积的性质

1、满足结合律
2、满足交换律
3、对加法满足分配律
4、两个积性函数的狄利克雷卷积还是积性函数


数论函数

常数函数: n ( i ) = n n(i)=n n(i)=n (一直返回一个常数)

一些常见的积性函数

  • 单位元函数: e ( n ) = [ n = 1 ] e(n) = [n = 1] e(n)=[n=1]
    它卷积上任意的数论函数仍为原来的数论函数,即满足 f ∗ e = e ∗ f = f f*e = e* f = f fe=ef=f

  • 幂函数: i d k ( n ) = n k id^k(n) = n^k idk(n)=nk,完全积性。

  • 单位函数: i d ( n ) = n id(n) = n id(n)=n,完全积性,相当于 i d 1 id^1 id1

  • 恒等函数: I ( n ) = 1 I(n) = 1 I(n)=1(也就是常数值函数,只是刚好这个常数等于 1),完全积性,相当于 i d 0 id^0 id0

  • 欧拉函数: φ ( n ) = ∑ i = 1 n [ ( n , i ) = 1 ] ⋅ 1 φ(n) = ∑_{i=1}^n[(n,i)=1]⋅1 φ(n)=i=1n[(n,i)=1]1,表示小于等于 n n n并且与 n n n互质的数的个数

  • 除数函数: σ k ( n ) = ∑ d ∣ n d k σ_k(n)=∑_{d|n}d^k σk(n)=dndk,表示 n n n的约数的 k k k次幂和,注意 σ k ( n ) σ_k(n) σk(n) σ k ( n ) σ^k(n) σk(n) 是不同的。

  • 约数和函数: σ ( n ) = σ 1 ( n ) = ∑ d ∣ n d σ(n)=σ_1(n)=∑_{d|n}d σ(n)=σ1(n)=dnd,表示 n n n的约数之和(∑)

  • 约数个数函数: τ ( n ) = σ 0 ( n ) = ∑ d ∣ n 1 τ(n)=σ_0(n)=∑_{d|n}1 τ(n)=σ0(n)=dn1,表示 n n n的约数的个数,一般也写为 d ( n ) d(n) d(n)

  • 莫比乌斯函数: μ ( n ) μ(n) μ(n),在狄利克雷卷积的乘法中与恒等函数 I ( n ) = 1 I(n) = 1 I(n)=1互为逆元,即有:
    μ ∗ I = e μ∗I=e μI=e
    并且 μ ( 1 ) = 1 μ(1)=1 μ(1)=1
    对于无平方因指数 n = ∏ i = 1 t p i 有 μ ( n ) = ( − 1 ) t n =∏_{i=1}^{t}p_i有μ(n)=(−1)^t n=i=1tpiμ(n)=(1)t
    对于有平方因子数 n n n μ ( n ) = 0 μ(n)=0 μ(n)=0
    如下图:
    在这里插入图片描述

四条常用的狄利克雷卷积

①: I ∗ μ = e I ∗ μ = e Iμ=e ,(即 I I I μ μ μ 互为逆元)
②: μ ∗ i d = φ μ ∗ id = φ μid=φ
③: I ∗ i d = σ I ∗ id = σ Iid=σ
④: I ∗ I = τ I ∗ I = τ II=τ

莫比乌斯反演

F ( n ) = ∑ d ∣ n f ( d ) F(n)=∑_{d|n}f(d) F(n)=dnf(d)
通过简单的狄利克雷卷积运算能够轻易地证明出莫比乌斯反演:
f ( d ) = ∑ d ∣ n μ ( d ) ⋅ F ( n d ) f(d)=∑_{d|n}μ(d)⋅F(\frac{n}{d}) f(d)=dnμ(d)F(dn)

两个重要结论

结论①: n = ∑ d ∣ n φ ( d ) n=∑_{d|n}φ(d) n=dnφ(d)
结论②: σ ( n ) = ∑ d ∣ n τ ( d ) ∗ φ ( n d ) σ(n)=∑_{d|n}τ(d)∗φ(\frac{n}{d}) σ(n)=dnτ(d)φ(dn)

二项式反演

A i = ∑ j = 0 i C i j ⋅ B j A_i=∑^i_{j=0}C^j_i⋅B_j Ai=j=0iCijBj ,反演得: B i = ∑ j = 0 i ( − 1 ) j ⋅ C i j ⋅ A j B_i=∑^i_{j=0}(−1)^j⋅C^j_i⋅A_j Bi=j=0i(1)jCijAj

参考来源

推荐博客
https://blog.csdn.net/liyizhixl/article/details/79997478?tdsourcetag=s_pcqq_aiomsg
博客
https://dimensiontripper.github.io/2018/10/29/Dirichlet_Product/
百度百科
https://baike.baidu.com/item/%E7%8B%84%E5%88%A9%E5%85%8B%E9%9B%B7%E4%B9%98%E7%A7%AF/18903903?fromtitle=%E7%8B%84%E5%88%A9%E5%85%8B%E9%9B%B7%E5%8D%B7%E7%A7%AF&fromid=23704238&fr=aladdin

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值