19牛客暑假多校第二场 A题 Eddy Walker(打表找规律)

题意

有n个点的环,初始位置在0,可以随机向前走或向后走,问n个位置都走过,并且最后停在m的概率,最后输出前i种情况的概率。

思路

打表的时候n的值不要输入太大!
要分组输入,不要多组输入

打表会发现概率是一样的,都等于1/(n - 1)。

另外有两个特殊情况:

1、人一开始站在0上,0已经视为走过了。所以当n == 1 && m == 0 时,开始即终止,概率为1。

2、而当n > 1 && m == 0时,因为走完n个点就结束了,从0点开始走,不可能刚好走完n个点后停在0处,此时的概率是0。

最后要求输出的是每次的结果(概率)的累乘,具体看代码里面的ans。

这里有一个不是用打表找规律做出来的博客:
https://blog.nowcoder.net/n/95f1fe2b38aa4befaba3750128a12786

代码

打表代码

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int vis[maxn], ans[maxn];
int n;//一共有n个点
int pos;//当前所在位置
int cnt;//已经经过了几个点。
int main()
{
    scanf("%d", &n);//不要用多组样例输入,不要输入太大的n值
    srand((unsigned int)(time(NULL)));
    for(int i = 1; i <= 100000; i++)
    {
        memset(vis, 0, sizeof(vis));
        vis[0] = 1;
        pos = 0;
        cnt = 1;
        while(cnt < n)
        {
            int moving = rand() % 2 ? 1 : -1;
            pos = (pos + moving + n) % n;
            if(!vis[pos])
            {
                vis[pos] = 1;
                cnt++;
            }
            if(cnt == n)
            {
                ans[pos]++;
            }
        }
    }
    for(int i = 0;i < n; i++)
        printf("%d ", ans[i]);
    printf("\n");
    return 0;
}

AC代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9 + 7;
ll quick_pow(ll a, ll b)
{
    ll ans = 1;
    while(b)
    {
        if(b & 1)
            ans = ans * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return ans;
}
int main()
{
    ll t, n, m;
    ll ans = 1;
    scanf("%lld", &t);
    while(t--)
    {
        scanf("%lld %lld", &n, &m);
        if(n == 1 && m == 0)
        {
            printf("%lld\n", ans);
        }
        else if(m == 0)
        {
            ans = 0;
            printf("0\n");
        }
        else
        {
            ans = (ans * quick_pow(n - 1, mod - 2)) % mod ;
            printf("%lld\n", ans);
        }
    }
    return 0;
}

参考来源

博客
https://blog.nowcoder.net/n/e73e0ca1240342e1a73f52c89bf37e7c
博客
https://blog.nowcoder.net/n/95f1fe2b38aa4befaba3750128a12786

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值