题意
有n个点的环,初始位置在0,可以随机向前走或向后走,问n个位置都走过,并且最后停在m的概率,最后输出前i种情况的概率。
思路
打表的时候n的值不要输入太大!
要分组输入,不要多组输入
打表会发现概率是一样的,都等于1/(n - 1)。
另外有两个特殊情况:
1、人一开始站在0上,0已经视为走过了。所以当n == 1 && m == 0 时,开始即终止,概率为1。
2、而当n > 1 && m == 0时,因为走完n个点就结束了,从0点开始走,不可能刚好走完n个点后停在0处,此时的概率是0。
最后要求输出的是每次的结果(概率)的累乘,具体看代码里面的ans。
这里有一个不是用打表找规律做出来的博客:
https://blog.nowcoder.net/n/95f1fe2b38aa4befaba3750128a12786
代码
打表代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
int vis[maxn], ans[maxn];
int n;//一共有n个点
int pos;//当前所在位置
int cnt;//已经经过了几个点。
int main()
{
scanf("%d", &n);//不要用多组样例输入,不要输入太大的n值
srand((unsigned int)(time(NULL)));
for(int i = 1; i <= 100000; i++)
{
memset(vis, 0, sizeof(vis));
vis[0] = 1;
pos = 0;
cnt = 1;
while(cnt < n)
{
int moving = rand() % 2 ? 1 : -1;
pos = (pos + moving + n) % n;
if(!vis[pos])
{
vis[pos] = 1;
cnt++;
}
if(cnt == n)
{
ans[pos]++;
}
}
}
for(int i = 0;i < n; i++)
printf("%d ", ans[i]);
printf("\n");
return 0;
}
AC代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod = 1e9 + 7;
ll quick_pow(ll a, ll b)
{
ll ans = 1;
while(b)
{
if(b & 1)
ans = ans * a % mod;
a = a * a % mod;
b >>= 1;
}
return ans;
}
int main()
{
ll t, n, m;
ll ans = 1;
scanf("%lld", &t);
while(t--)
{
scanf("%lld %lld", &n, &m);
if(n == 1 && m == 0)
{
printf("%lld\n", ans);
}
else if(m == 0)
{
ans = 0;
printf("0\n");
}
else
{
ans = (ans * quick_pow(n - 1, mod - 2)) % mod ;
printf("%lld\n", ans);
}
}
return 0;
}
参考来源
博客
https://blog.nowcoder.net/n/e73e0ca1240342e1a73f52c89bf37e7c
博客
https://blog.nowcoder.net/n/95f1fe2b38aa4befaba3750128a12786