问题
求 1 2 + 2 2 + 3 2 + … … + n 2 1^2+2^2+3^2+……+n^2 12+22+32+……+n2
结论
1 2 + 2 2 + … … + n 2 = ( n ∗ ( n + 1 ) ∗ ( 2 ∗ n + 1 ) ) ( 6 ) 1^2+2^2+……+n^2 = \frac{(n * (n + 1) * (2 * n + 1))} {(6)} 12+22+……+n2=(6)(n∗(n+1)∗(2∗n+1))
推导
需要用到恒等式 ( n + 1 ) 3 = n 3 + 3 n 2 + 3 n + 1 (n+1)^3=n^3+3n^2+3n+1 (n+1)3=n3+3n2+3n+1来证明
具体步骤如下:
恒等式
(
n
+
1
)
3
=
n
3
+
3
n
2
+
3
n
+
1
(n+1)^3=n^3+3n^2+3n+1
(n+1)3=n3+3n2+3n+1
移项:
(
n
+
1
)
3
−
n
3
=
3
n
2
+
3
n
+
1
(n+1)^3-n^3=3n^2+3n+1
(n+1)3−n3=3n2+3n+1
用(n-1)替换n,得
n
3
−
(
n
−
1
)
3
=
3
(
n
−
1
)
2
+
3
(
n
−
1
)
+
1
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1
n3−(n−1)3=3(n−1)2+3(n−1)+1
(
n
−
1
)
3
−
(
n
−
2
)
3
=
3
(
n
−
2
)
2
+
3
(
n
−
2
)
+
1
(n-1)^3-(n-2)^3=3(n-2)^2+3(n-2)+1
(n−1)3−(n−2)3=3(n−2)2+3(n−2)+1
……………………………………………………
3
3
−
2
3
=
3
∗
2
2
+
3
∗
2
+
1
3^3-2^3=3*2^2+3*2+1
33−23=3∗22+3∗2+1
2
3
−
1
3
=
3
∗
1
2
+
3
∗
1
+
1
2^3-1^3=3*1^2+3*1+1
23−13=3∗12+3∗1+1
把这n个等式两端分别相加
得
(
n
+
1
)
3
−
1
=
3
(
1
2
+
2
2
+
3
2
+
.
.
.
.
.
.
+
n
2
)
+
3
(
1
+
2
+
.
.
.
+
n
)
+
n
(n+1)^3-1=3(1^2+2^2+3^2+......+n^2)+3(1+2+...+n)+n
(n+1)3−1=3(12+22+32+......+n2)+3(1+2+...+n)+n
由于
1
+
2
+
.
.
.
+
n
=
n
(
n
+
1
)
2
1+2+...+n=\frac{n(n+1)}{2}
1+2+...+n=2n(n+1)
代入上式得
n
3
+
3
n
2
+
3
n
=
3
(
1
2
+
2
2
+
3
2
+
.
.
.
.
.
.
+
n
2
)
+
3
∗
n
(
n
+
1
)
2
+
n
n^3+3n^2+3n=3(1^2+2^2+3^2+......+n^2)+\frac{3*n(n+1)}{2}+n
n3+3n2+3n=3(12+22+32+......+n2)+23∗n(n+1)+n
整理后,得:
1
2
+
2
2
+
3
2
+
.
.
.
.
.
.
+
n
2
=
n
(
n
+
1
)
(
2
n
+
1
)
6
1^2+2^2+3^2+......+n^2=\frac{n(n+1)(2n+1)}{6}
12+22+32+......+n2=6n(n+1)(2n+1)
代码
//输入x,求出前x个平方的和
ll cal(ll x){
__int128 ans = x;
ans = ans * (ans + 1) * (ans * 2 + 1) / 6;
ans %= MOD;
return ans;
}
例题
广东工业大学2018年新生赛决赛I题 灰暗而空虚的景色β
https://blog.csdn.net/weixin_43272781/article/details/84678260
思路:从后往前跑一遍即可
参考来源
作业帮
https://www.zybang.com/question/d2eaccbae18fa39d68763c0df3d41263.html