数学结论 前n个数字的平方和公式

问题

1 2 + 2 2 + 3 2 + … … + n 2 1^2+2^2+3^2+……+n^2 12+22+32+……+n2

结论

1 2 + 2 2 + … … + n 2 = ( n ∗ ( n + 1 ) ∗ ( 2 ∗ n + 1 ) ) ( 6 ) 1^2+2^2+……+n^2 = \frac{(n * (n + 1) * (2 * n + 1))} {(6)} 12+22+……+n2=(6)(n(n+1)(2n+1))

推导

需要用到恒等式 ( n + 1 ) 3 = n 3 + 3 n 2 + 3 n + 1 (n+1)^3=n^3+3n^2+3n+1 (n+13=n3+3n2+3n+1来证明

具体步骤如下:

恒等式 ( n + 1 ) 3 = n 3 + 3 n 2 + 3 n + 1 (n+1)^3=n^3+3n^2+3n+1 (n+13=n3+3n2+3n+1
移项: ( n + 1 ) 3 − n 3 = 3 n 2 + 3 n + 1 (n+1)^3-n^3=3n^2+3n+1 (n+1)3n3=3n2+3n+1
用(n-1)替换n,得
n 3 − ( n − 1 ) 3 = 3 ( n − 1 ) 2 + 3 ( n − 1 ) + 1 n^3-(n-1)^3=3(n-1)^2+3(n-1)+1 n3(n1)3=3(n1)2+3(n1)+1
( n − 1 ) 3 − ( n − 2 ) 3 = 3 ( n − 2 ) 2 + 3 ( n − 2 ) + 1 (n-1)^3-(n-2)^3=3(n-2)^2+3(n-2)+1 (n1)3(n2)3=3(n2)2+3(n2)+1
……………………………………………………
3 3 − 2 3 = 3 ∗ 2 2 + 3 ∗ 2 + 1 3^3-2^3=3*2^2+3*2+1 3323=322+32+1
2 3 − 1 3 = 3 ∗ 1 2 + 3 ∗ 1 + 1 2^3-1^3=3*1^2+3*1+1 2313=312+31+1
把这n个等式两端分别相加
( n + 1 ) 3 − 1 = 3 ( 1 2 + 2 2 + 3 2 + . . . . . . + n 2 ) + 3 ( 1 + 2 + . . . + n ) + n (n+1)^3-1=3(1^2+2^2+3^2+......+n^2)+3(1+2+...+n)+n (n+1)31=3(12+22+32+......+n2)+3(1+2+...+n)+n
由于 1 + 2 + . . . + n = n ( n + 1 ) 2 1+2+...+n=\frac{n(n+1)}{2} 1+2+...+n=2n(n+1)
代入上式得 n 3 + 3 n 2 + 3 n = 3 ( 1 2 + 2 2 + 3 2 + . . . . . . + n 2 ) + 3 ∗ n ( n + 1 ) 2 + n n^3+3n^2+3n=3(1^2+2^2+3^2+......+n^2)+\frac{3*n(n+1)}{2}+n n3+3n2+3n=312+22+32+......+n2)+23n(n+1)+n
整理后,得: 1 2 + 2 2 + 3 2 + . . . . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+3^2+......+n^2=\frac{n(n+1)(2n+1)}{6} 12+22+32+......+n2=6n(n+1)(2n+1)

代码

//输入x,求出前x个平方的和
ll cal(ll x){
    __int128 ans = x;
    ans = ans * (ans + 1) * (ans * 2 + 1) / 6;
    ans %= MOD;
    return ans;
}

例题

广东工业大学2018年新生赛决赛I题 灰暗而空虚的景色β
https://blog.csdn.net/weixin_43272781/article/details/84678260
思路:从后往前跑一遍即可

参考来源

作业帮
https://www.zybang.com/question/d2eaccbae18fa39d68763c0df3d41263.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值