GHOST使用教程(图解)

1.准备工作

准备一个带PE的U盘,这里我使用的是老毛桃自带ghost
请添加图片描述

2.选择ghost11.5.1请添加图片描述

请添加图片描述

3.进入Ghost主菜单后可以看到以下

请添加图片描述
GHOST的主菜单:

1、 Local:本地操作,对本地计算机上的硬盘进行操作。

2、 Peer to peer:通过点对点模式对网络计算机上的硬盘进行操作。

3、 Ghost Cast:通过单播/多播或者广播方式对网络计算机上的硬盘进行操作。

4、 Option:使用Ghsot时的一些选项,一般使用默认设置即可。

5、 Help:一个简洁的帮助。

6、 Quit:退出Ghost

4.选择local本地操作

请添加图片描述

其中 disk是全硬盘、partition是分区、check是检查

disk:指的是对整个硬盘进行操作(复制、镜像、还原)

partition:指的是对某个分区例如(C盘、D盘等)进行操作(复制、镜像、还原)

check:指的是对硬盘进行检查操作

5.这次我选择的是Partition(分区)对单一分区进行操作

请添加图片描述

点进去可以看到又有三个选择

请添加图片描述

分别是

1.To Pratition:把某个硬盘的分区备份你指定的硬盘的某个分区(例:把A硬盘的C盘分区备份到B硬盘的D盘分区)
2.To Image:把某个硬盘的分区制作成镜像文件
3.From Image:把制作好的镜像文件还原到指定硬盘分区

6.本次演示我选的是to image,【回车】后出现下个界面选择需要进行备份的硬盘,一般情况下最上面那一个就是系统盘(示例图为双硬盘),再次【回车】确认并进入下一界面请添加图片描述

7.进入系统盘的分区界面后,选择需要备份的分区,注意:【Primary】为主分区,【logical】为逻辑分区,而系统分区一般在主分区。

8.选中【Primary】后,【回车】确认(此时【Primary】应为蓝色)

请添加图片描述

9.随后,使用【Tab键】切换操作选项,切换至【OK】选项(此时【OK】选项字体为白色),并【回车】进入下一界面

请添加图片描述

10.接下来需要选择备份保存的位置以及文件名&继续使用【Tab键】切换操作选项,切换至上方的位置选择处,【回车】展开,使用【上下方向键】选择备份保存的位置,【回车】确认(不可保存在你要备份的分区里)

请添加图片描述

11.随后,直接切换至文件命名处,输入系统备份文件名称,最后【回车】

请添加图片描述

12.继续【Tab键】切换至备份文件格式选项,【回车】展开,使用【上下方向键】选择格式为【GHO】,并【回车】确认

请添加图片描述

13.弹出【compressimage file?】(是否压缩镜像)对话框后,选择压缩文件的方式,一般情况下默认选择为【FAST】(即如图所示页面),【回车】确认。(其中:【No】为不压缩;【Fast】为快速压缩,其压缩率低,体积相对较大,速度快;而【High】则为高压缩,压缩率高,体积相对较小,速度慢。)

请添加图片描述

14.随后,会弹出【Proceedwith partition image creation?】提示选择是否开始备份,【YES】(是)或【NO】(不),使用【左右方向键】选择【YES】,最后【回车】,即可开始系统Ghost备份请添加图片描述

15.备份完成后,会弹出【DumpCompleted Successfully】的提示窗,直接【回车】确认即可

请添加图片描述

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值