缓存与数据库一致性之延迟双删策略

场景

一般一些热点数据我们都会通过同步到缓存,让请求命中到缓存而非穿透到数据库的形式来降低数据库的压力。这确实是目前互联网用得最多的保护数据库的方案,但是这样也会衍生出一些问题,最常见的就是缓存内数据和数据库数据并非同步的。

A例:先删除缓存数据,然后更新数据库:假设A请求删除了缓存数据,B请求来获取数据,查询不到数据时,认为是数据过期了,直接拿数据库内的数据并且填充到缓存了。这时A请求才去更新数据库,而缓存数据已经被B拿旧数据填充了。这样缓存和数据库就不是一致的了。

B例:先更新数据库,再删除缓存数据:假设A请求更新了数据库,还未情况缓存的情况下,B请求拿到的是缓存内的旧数据,因为A还没来得及把新的数据填充到缓存。

双删策略

这里指的是删除两次缓存,首先删除缓存,然后更新数据库,为了避免有其他的请求拿错误的数据覆盖到了缓存,再次删除掉缓存,让下一次的请求命中到数据库,从而把最新的数据填充到缓存。

这就是比A例子多一个再次删除缓存的操作,这样就能避免一些问题。

延迟双删策略

为什么会存在延迟双删呢,普通的双删时,假设B请求获取到了旧数据,准备填充到缓存,A请求刚刚更新完数据库,立刻删除了缓存,在删除完成后B请求才把旧数据去填充,这样依然会出现缓存与数据库不一致的情况(即缓存内数据错误)。

延迟双删就是A请求更新完数据库之后,延迟那么一会再去删除缓存,这样的目的也很明显,就是为了让B请求(以及其他很多相近时间的请求)已经拿旧数据填充过缓存了,并且已经走完这一段逻辑了,后续不会去尝试覆盖缓存了。这个时候再去删除缓存,下一次去填充缓存的时候就拿到的是A请求更新好的正确的数据了。

后记

其实看完延迟双删之后,大家也估计都注意到了一个问题,就是会存在一段时间的错误数据,以及穿透到数据库的情况。延迟双删只是能避免一部分数据不一致问题,但是不是一种最完美的解决方案,对于一些数据实时性要求高的场景,或者并发大的场景其实不是完全适用的。不过技术这条路,大家都是选择适合自己场景的,这个利弊以及适配度需要开发者自己把握咯。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值