习题1-1输入三个整数,输出它们的平均值,保留3位小数

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


系列

《算法竞赛入门经典》(c语言)习题1-1

代码

#include<stdio.h>
#include<math.h>

int main()
{
	int a, b, c;
	double n;
	scanf_s("%d%d%d", &a, &b, &c);
	n = (a + b + c) / 3.00;
	printf("%.3lf\n", n);
	return 0;
}

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: ``` #include <stdio.h> int main() { int a, b, i, gcd; printf("请输入两个整数:\n"); scanf("%d%d", &a, &b); for (i = 1; i <= a && i <= b; i++) { if (a % i == 0 && b % i == 0) { gcd = i; } } printf("%d和%d的最大公约数是:%d\n", a, b, gcd); return 0; } ``` ### 回答2: 最大公约数(Greatest Common Divisor,简称GCD)是指能够同时整除两个或多个整数的最大正整数。我们可以使用欧几里得算法来求解两个整数的最大公约数。 欧几里得算法的基本原理是,如果两个整数a和b(a > b)的最大公约数为c,那么a可以写成b的整数倍加上余数,即a = kb + r。那么b和r的最大公约数也是c(因为能够同时整除a和b的数也能够整除r,反之亦然)。因此,我们可以将问题逐步转化为求解b和r的最大公约数,直到r等于0为止。 具体步骤如下: 1. 输入两个整数a和b。 2. 如果a小于b,则交换a和b的值,确保a大于b。 3. 对a和b进行求余运算,将结果赋值给变量r。 4. 如果r等于0,则b即为最大公约数,输出b。 5. 否则,将b的值赋给a,将r的值赋给b,返回第3步。 下面是一个简单的示例程序: ```python a = int(input("请输入第一个整数:")) b = int(input("请输入第二个整数:")) if a < b: a, b = b, a while b != 0: r = a % b a, b = b, r print("最大公约数为", a) ``` 请注意,这个程序假设输入的两个整数都是正数。如果需要考虑负数或零的情况,还需要进行适当的判断和处理。 ### 回答3: 最大公约数(GCD)指的是两个或多个整数中最大的能够整除它们的数。找到两个数的最大公约数的一种常见方法是使用辗转相除法。 辗转相除法的基本思想是,两个数的最大公约数等于其中较小数与两数的差的最大公约数。具体算法如下: 1. 输入两个整数a和b; 2. 用较大数除以较小数,将所得的余数赋值给r; 3. 如果r等于0,则较小数即为最大公约数; 4. 如果r不等于0,则将较小数赋值给较大数,将r赋值给较小数,回到步骤2。 5. 重复步骤2和3,直到r等于0。 下面以输入整数a=28和b=14为例进行说明: 1. 初始时,a=28,b=14; 2. 用28除以14,得到的余数是0; 3. 余数为0,所以最大公约数为较小数14。 综上所述,输出整数28和14的最大公约数是14。根据辗转相除法的算法步骤,我们可以将这个过程通过编程的方式实现,来求解任意两个整数的最大公约数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值