小字辈(左子右兄加强版)

本文介绍了一个编程题目,涉及构建二叉树并使用深度优先搜索(DFS)算法找出每个节点的最小辈分。主要步骤包括构建家谱、遍历节点并更新辈分,最后输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

在这里插入图片描述
在这里插入图片描述

输入样例1
5
1 2 0
2 4 3
3 0 0
4 0 5
5 0 0
输出样例1
3
4 5

输出样例2
5
2 5 3
1 2 0
3 0 0
4 0 0
5 0 4
输出样例2
3
4 5

思路

dfs + 二叉树

存储结构
1.用结构体数组存储每个节点的父节点、左右节点
2.用vector存储答案

具体做法
1.根据输出,构建家谱
2.遍历每一个点,找出父节点==0的点,该点为祖宗节点
3.从祖宗节点开始dfs
①当辈分 大于 上一次递归辈分时,说明找到了更小辈分的,将res清空,并将当前辈分最小的加入res
②当辈分 等于 上一次递归辈分时,将该节点加入res数组
4.如果该点的左节点存在(子节点),继续遍历,辈分+1
5.如果该点的右节点存在(兄弟节点),继续遍历,辈分不变

AC代码

#include <bits/stdc++.h>
using namespace std;
const int N = 100010;
vector<int> res;
typedef struct
{
    int fa, son, bro;
}person;
person p[N];
int cnt = -1;
void dfs(int x, int step)
{
    if(step > cnt)
    {
        cnt = step;
        res.clear();
        res.push_back(x);
    }
    else if(step == cnt) res.push_back(x);
    if(p[x].son) dfs(p[x].son, step + 1); //搜索子节点,辈分+1
    if(p[x].bro) dfs(p[x].bro, step); //搜索兄弟节点,辈分不变
}
int main()
{
    int n;
    scanf("%d", &n);
    for(int i = 0; i < n; i ++)
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        if(b)
        {
            p[a].son = b;
            p[b].fa = a;
        }
        if(c)
        {
            p[a].bro = c;
            p[c].fa = a; //这里的意思不是c的父亲是a,只是在树的关系中,c是a的一个节点,这会影响到下面找祖宗节点
        }
    }
    int root;
    for(int i = 1; i <= n; i ++)
    {
        if(!p[i].fa)
        {
            root = i;
            break;
        }
    }
    //printf("%d\n", root);
    dfs(root, 1);
    printf("%d\n", cnt);
    sort(res.begin(), res.end());
    for(int i = 0; i < res.size(); i ++)
    {
        if(i != res.size() - 1) printf("%d ", res[i]);
        else printf("%d\n", res[i]);
    }
    return 0;
}

总结

相较于小字辈,该题多了一步对兄弟节点的遍历

欢迎大家批评指正!!!

### 关于 L2-026 小字辈 编程题目解决方案 对于给定的要求,程序需先输出最小的辈分,随后在同一行按照递增顺序输出该辈分下的所有成员编号。此操作基于家族树结构来实现。 为了满足这些需求,可以采用广度优先遍历算法(BFS),因为这种算法能够逐层访问节点,非常适合处理此类层次化数据结构的问题[^1]。具体来说,在构建好表示家庭关系的数据结构之后——通常是一个图或树的形式,通过队列辅助完成遍历过程,记录当前正在访问的是哪一层以及这一层有哪些后代。 当遇到第一个非空的新一代时停止进一步深入探索,并收集并打印出这代人的ID列表作为最终结果的一部分。下面给出一段Python代码示例用于解决这个问题: ```python from collections import deque, defaultdict def find_min_generation(family_tree): queue = deque([(1, 1)]) # (member_id, generation) min_gen_members = [] while queue: current_member, gen = queue.popleft() if not min_gen_members or gen == min_gen_members[0][1]: min_gen_members.append((current_member, gen)) children = family_tree[current_member] for child in children: queue.append((child, gen + 1)) if min_gen_members and gen != min_gen_members[-1][1]: break print(min_gen_members[0][1]) print(' '.join(str(member) for member, _ in sorted(set([m for m, g in min_gen_members])))) # 构建测试用的家庭树 family_tree = { 1: [2, 3], 2: [], 3: [4, 5], 4: [], 5: [] } find_min_generation(family_tree) ``` 这段代码定义了一个`find_min_generation`函数接收一个字典形式的家庭树参数,其中键代表某位祖先的身份标识符而对应的值则为他们直系子嗣组成的列表;接着初始化了一个双端队列用来存储待处理的人及其所属世代的信息;最后实现了上述提到的核心逻辑并通过调用实例展示了如何使用它。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值