原理: 已知一个训练样本集(有标签),计算待测试样本与所有训练样本的距离。
按距离从小到大进行排序并取前 k 个,统计 k 个中出现次数最多的分类为分类结果。
优点:精度高,对异常值不敏感,无数据输入假定
缺点:计算复杂度高,空间复杂度高
原理: 已知一个训练样本集(有标签),计算待测试样本与所有训练样本的距离。
按距离从小到大进行排序并取前 k 个,统计 k 个中出现次数最多的分类为分类结果。
优点:精度高,对异常值不敏感,无数据输入假定
缺点:计算复杂度高,空间复杂度高
转载于:https://www.cnblogs.com/zuozuolearning/p/7677324.html