k-近邻法(kNN)

原理: 已知一个训练样本集(有标签),计算待测试样本与所有训练样本的距离。

按距离从小到大进行排序并取前 k 个,统计 k 个中出现次数最多的分类为分类结果。

 

优点:精度高,对异常值不敏感,无数据输入假定

缺点:计算复杂度高,空间复杂度高

 

转载于:https://www.cnblogs.com/zuozuolearning/p/7677324.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值