判断一个数是否为素数

🚀欢迎互三!

目录

1、暴力法:

2、线性筛法:

3、类欧几里得算法:

4、埃氏筛法:


在计算机程序中,可以使用以下几种方法来判断一个数是否为素数:

1、暴力法:

遍历 2 到根号 n 的数,判断 n 是否能被它们整除。如果 n 能被任意一个数整除,则 n 不是素数;否则 n 是素数。下面是一个使用暴力法判断素数的 C++ 代码示例:

#include <iostream>
#include <cmath>

using namespace std;

bool is_prime(int n) {
    if (n <= 1) return false;
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0) return false;
    }
    return true;
}

int main() {
    int n;
    cin >> n;
    if (is_prime(n)) {
        cout << n << " is a prime number" << endl;
    }
    else {
        cout << n << " is not a prime number" << endl;
    }
    return 0;
}

运行结果

2、线性筛法:

使用线性时间复杂度来预处理出小于等于给定数 n 的所有素数,然后判断 n 是否在素数列表中。下面是使用线性筛法判断素数的 C++ 代码示例:

#include <iostream>
#include <cmath>

using namespace std;

#include <iostream>
#include <cstring>

using namespace std;

const int N = 1000000;

bool isPrime[N + 5]; // isPrime[i]表示数字i是否是素数

void linear_sieve(int n) {
    memset(isPrime, true, sizeof(isPrime)); // 初始化,假设所有数字都是素数
    isPrime[0] = isPrime[1] = false; // 0和1不是素数
    for (int i = 2; i <= n; i++) { // 从2开始枚举
        if (isPrime[i]) { // 如果i是素数
            for (int j = i * i; j <= n; j += i) { // 将i的倍数全部标记为合数
                isPrime[j] = false;
            }
        }
    }
}

int main() {
    int n;
    cin >> n;
    linear_sieve(n); // 求出小于等于n的素数
    for (int i = 0; i <= n; i++) {
        if (isPrime[i]) {
            cout << i << " ";
        }
    }
    cout << endl;
    return 0;
}

运行结果

3、类欧几里得算法:

在数论中,可以使用类欧几里得算法来判断一个数是否为素数。根据费马小定理(Fermat's little theorem),对于所有大于 2 的正整数 n,如果存在一个数 a,使得 a^(n-1) ≡ 1 (mod n),则 n 为素数。

因此,我们可以使用类欧几里得算法来快速计算 a^(n-1) mod n 的值,如果结果为 1,则 n 为素数;否则 n 不是素数。下面是使用类欧几里得算法判断素数的 C++ 代码示例:

#include <iostream>
#include <cmath>

using namespace std;

int mod_pow(int a, int b, int m) {
  int res = 1;
  a %= m;
  while (b > 0) {
    if (b & 1) res = res * a % m;
    a = a * a % m;
    b >>= 1;
  }
  return res;
}

bool is_prime(int n) {
  if (n <= 1) return false;
  if (n <= 3) return true;
  int d = n - 1;
  while (d % 2 == 0) d /= 2;
  for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
    if (n == a) return true;
    if (mod_pow(a, d, n) == 1) continue;
    int r = d;
    while (r < n - 1 && mod_pow(a, r, n) != n - 1) r *= 2;
    if (r >= n - 1) return false;
  }
  return true;
}

int main() {
  int n;
  cin >> n;
  if (is_prime(n)) {
    cout << n << " is a prime number" << endl;
  } else {
    cout << n << " is not a prime number" << endl;
  }
  return 0;
}

运行结果

4、埃氏筛法:

埃氏筛法(Sieve of Eratosthenes)是一种用于预处理小于等于给定数 n 的所有素数的算法。该算法的基本思想是,使用一个布尔数组来存储小于等于 n 的数是否为素数,然后逐个遍历这些数,并根据它们是否为素数来更新数组中其他数的状态。下面是使用埃氏筛法判断素数的 C++ 代码示例:

#include <iostream>
#include <cmath>

using namespace std;

int mod_pow(int a, int b, int m) {
  int res = 1;
  a %= m;
  while (b > 0) {
    if (b & 1) res = res * a % m;
    a = a * a % m;
#include <iostream>
#include <cstring>
#include <cmath>

using namespace std;

const int N = 1000000;

bool is_prime[N + 5];

void sieve() {
  memset(is_prime, true, sizeof(is_prime));
  is_prime[0] = is_prime[1] = false;
  for (int i = 2; i <= N; i++) {
    if (is_prime[i]) {
      for (int j = 2 * i; j <= N; j += i) {
        is_prime[j] = false;
      }
    }
  }
}

bool check_prime(int n) {
  return is_prime[n];
}

int main() {
  sieve();
  int n;
  cin >> n;
  if (check_prime(n)) {
    cout << n << " is a prime number" << endl;
  } else {
    cout << n << " is not a prime number" << endl;
  }
  return 0;
}

运行结果

以上四种方法都可以判断素数,大家学会了吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值