【阅读随笔】神经网络与参数学习 Neural Network for Weighted Signal Temporal Logic

前言:今天整理一下最近看的一篇文章,作为TLNN那篇文章的补充。

主要参考文献:
Yan, R., & Julius, A. (2021). Neural network for weighted signal temporal logic. arXiv preprint arXiv:2104.05435.

概述


流水账笔记

1 Introduction

首先由时间序列的分类问题引出现有机器学习分类方法的不足——可解释性差,并提出时序逻辑的解决方案,

引出时序逻辑的分支——STL,并举例了几种量化满足程度的方法及其缺点。其中传统的基于min/max算子的鲁棒方法非凸、非平滑,且其满足程度仅取决于一个信号点,而没有利用到整体。为了解决这个问题,后来提出了wSTL,但是其信号上的权重定义存在bug:(1) 权重为0的信号点仍能影响总的鲁棒度 (2) 并不是权重越高的信号点对总鲁棒度的影响越大。

接下来话锋一转开始提神经网络,提出神经网络中的激活函数和鲁棒度计算有相通之处,最后引出文本工作。

  1. 提出了一种新的量化语义
  2. 提出了wSTL-NN框架
  3. 提出两种稀疏化方法(用于减少训练参数,节约内存)

2 Preliminaries

  • 介绍了什么是时间序列(略)
  • 介绍了STL的语法和语义(略)

3 Weighted Signal Temporal Logic

  • 定义了wSTL的语法和语义,同这一篇文章(略)

4 Neural Network for wSTL

4.1 Activation Functions for Logical and Temporal Operators

4.2 Learning of wSTL Formulas with wSTL-NN


5 Sparsification of wSTL-NN

5.1 Sparsification with Weight Thresholding

5.2 Sparsification with Gate Variables

Gate Variables

Sparsification Realization


6 Case Study

数据集如下:

在这里插入图片描述
数据结构如下:

在这里插入图片描述
无稀疏化

对比了wSTL-NN与其他机器学习方法的分类效果,采用了sensitivity, specificity, positive predictive value, negative predictive value来进行度量。

wSTL-NN学出了公式中的尺度部分 π \pi π以及每个信号点的权重 w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值