前言:今天整理一下最近看的一篇文章,作为TLNN那篇文章的补充。
主要参考文献:
Yan, R., & Julius, A. (2021). Neural network for weighted signal temporal logic. arXiv preprint arXiv:2104.05435.
文章目录
概述
流水账笔记
1 Introduction
首先由时间序列的分类问题引出现有机器学习分类方法的不足——可解释性差,并提出时序逻辑的解决方案,
引出时序逻辑的分支——STL,并举例了几种量化满足程度的方法及其缺点。其中传统的基于min/max算子的鲁棒方法非凸、非平滑,且其满足程度仅取决于一个信号点,而没有利用到整体。为了解决这个问题,后来提出了wSTL,但是其信号上的权重定义存在bug:(1) 权重为0的信号点仍能影响总的鲁棒度 (2) 并不是权重越高的信号点对总鲁棒度的影响越大。
接下来话锋一转开始提神经网络,提出神经网络中的激活函数和鲁棒度计算有相通之处,最后引出文本工作。
- 提出了一种新的量化语义
- 提出了wSTL-NN框架
- 提出两种稀疏化方法(用于减少训练参数,节约内存)
2 Preliminaries
- 介绍了什么是时间序列(略)
- 介绍了STL的语法和语义(略)
3 Weighted Signal Temporal Logic
- 定义了wSTL的语法和语义,同这一篇文章(略)
4 Neural Network for wSTL
4.1 Activation Functions for Logical and Temporal Operators
4.2 Learning of wSTL Formulas with wSTL-NN
5 Sparsification of wSTL-NN
5.1 Sparsification with Weight Thresholding
5.2 Sparsification with Gate Variables
Gate Variables
Sparsification Realization
6 Case Study
数据集如下:
数据结构如下:
无稀疏化
对比了wSTL-NN与其他机器学习方法的分类效果,采用了sensitivity, specificity, positive predictive value, negative predictive value来进行度量。
wSTL-NN学出了公式中的尺度部分 π \pi π以及每个信号点的权重 w