文章目录
多智能体 STL任务分解
[1] K. Leahy, M. Mann, and C.-I. Vasile, “Rewrite-Based Decomposition of Signal Temporal Logic Specifications,” in NASA Formal Methods, K. Y. Rozier and S. Chaudhuri, Eds., in Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023, pp. 224–240. doi: 10.1007/978-3-031-33170-1_14.
Overview
- 用rewriting system将STL公式分解以解决中心计算计算量太大的问题
- 同时给智能体分组
- 证明分解算法的收敛性
- 提出一个分解的评价指标并给出最佳分解的评价方式
1 Intro
LTL任务分解
[2,7,21,23]
STL任务分解
[6] Charitidou, M., Dimarogonas, D.V.: Signal temporal logic task decomposition via convex optimization. IEEE Contr. Syst. Lett. 6 , 1238–1243 (2021)
- 已知智能体的分组情况
[14] Leahy, K., Jones, A., Vasile, C.I.: Fast decomposition of temporal logic specifications for heterogeneous teams. IEEE Robot. Autom. Lett. 7 (2), 2297–2304 (2022)
- abstract reduction system,只能处理特定形式的STL
[22] Sun, D., Chen, J., Mitra, S., Fan, C.: Multi-agent motion planning from signal temporal logic specifications. IEEE Robot. Autom. Lett. 7 (2), 3451–3458 (2022)
- 将任务分解给每一个机器人,不考虑编队
- 主要探究的是控制综合的问题
本文工作
- 公式分解 + 机器人编队 (分两阶段完成)
- 提供了分解式的正则形式以及量化了分解上限
- 基于优化方法在DAG上选择最佳分解和编队
Background and Problem Definition
STL
文章分层定义了predicate和conjugate,如下所示
虽然文章说不约束STL的形式,但是这个定义一出来看上去是只接受一层时序嵌套和布尔运算的组合
Agent
-
智能体定义为一个状态和状态上界(element-wise)的元组 A = ( x ( t ) , u ) A=(x(t),u) A=(x(t),u)
-
u u u: x ( t ) x(t) x(t)有一个恒定的上界,假定是已知的
-
An agent “services” a predicate: 一个智能体的动作对该predicate是否满足有影响
-
equivalence class g u g_u gu: 具有相同 u u u的智能体被看做为同一类型
-
Robustness upper bound ρ u b \rho_{ub} ρub: 所有机器人鲁棒度能够达到的最大值之和
- 上面公式定义的很奇怪,感觉像是括号打错了,正确的应该是 ρ u b ( π ( x ( t ) ≥ c ) , A ) : = ∑ a ∈ A ( π ( a . u ) − c ) \rho_{ub}(\pi(x(t)\geq c),\mathcal{A}):=\sum_{a\in\mathcal{A}}(\pi(a.u)-c) ρub(π(x(t)≥c),A):=