【阅读随笔】Rewrite-Based Decomposition of Signal Temporal Logic Specifications

文章提出了使用RewritingSystem来分解SignalTemporalLogic(STL)公式,以解决中心计算量过大的问题。通过将任务分解和智能体编队相结合,文章提供了一种公式分解的正则形式,并量化了分解的上限。利用优化方法在DAG上选择最佳分解路径,同时考虑了任务分解的评分系统。实验结果显示,这种方法能有效提高任务求解的速度,尤其在大规模问题中表现更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多智能体 STL任务分解
[1] K. Leahy, M. Mann, and C.-I. Vasile, “Rewrite-Based Decomposition of Signal Temporal Logic Specifications,” in NASA Formal Methods, K. Y. Rozier and S. Chaudhuri, Eds., in Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2023, pp. 224–240. doi: 10.1007/978-3-031-33170-1_14.

Overview

  1. 用rewriting system将STL公式分解以解决中心计算计算量太大的问题
  2. 同时给智能体分组
  3. 证明分解算法的收敛性
  4. 提出一个分解的评价指标并给出最佳分解的评价方式

1 Intro

LTL任务分解

[2,7,21,23]

STL任务分解

[6] Charitidou, M., Dimarogonas, D.V.: Signal temporal logic task decomposition via convex optimization. IEEE Contr. Syst. Lett. 6 , 1238–1243 (2021)

  • 已知智能体的分组情况

[14] Leahy, K., Jones, A., Vasile, C.I.: Fast decomposition of temporal logic specifications for heterogeneous teams. IEEE Robot. Autom. Lett. 7 (2), 2297–2304 (2022)

  • abstract reduction system,只能处理特定形式的STL

[22] Sun, D., Chen, J., Mitra, S., Fan, C.: Multi-agent motion planning from signal temporal logic specifications. IEEE Robot. Autom. Lett. 7 (2), 3451–3458 (2022)

  • 将任务分解给每一个机器人,不考虑编队
  • 主要探究的是控制综合的问题

本文工作

  • 公式分解 + 机器人编队 (分两阶段完成)
  • 提供了分解式的正则形式以及量化了分解上限
  • 基于优化方法在DAG上选择最佳分解和编队

Background and Problem Definition

STL

文章分层定义了predicate和conjugate,如下所示
在这里插入图片描述
虽然文章说不约束STL的形式,但是这个定义一出来看上去是只接受一层时序嵌套和布尔运算的组合

Agent

  • 智能体定义为一个状态和状态上界(element-wise)的元组 A = ( x ( t ) , u ) A=(x(t),u) A=(x(t),u)

  • u u u x ( t ) x(t) x(t)有一个恒定的上界,假定是已知的

  • An agent “services” a predicate: 一个智能体的动作对该predicate是否满足有影响

  • equivalence class g u g_u gu: 具有相同 u u u的智能体被看做为同一类型

  • Robustness upper bound ρ u b \rho_{ub} ρub: 所有机器人鲁棒度能够达到的最大值之和在这里插入图片描述

    • 上面公式定义的很奇怪,感觉像是括号打错了,正确的应该是 ρ u b ( π ( x ( t ) ≥ c ) , A ) : = ∑ a ∈ A ( π ( a . u ) − c ) \rho_{ub}(\pi(x(t)\geq c),\mathcal{A}):=\sum_{a\in\mathcal{A}}(\pi(a.u)-c) ρub(π(x(t)c),A):=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值