目前有那些可用免费GPU资源?

目前有那些可用免费GPU资源?

Kaggle

kaggle网址:
在这里插入图片描述
kaggle需要注册,如果觉得很麻烦就用goole账号登录,kaggle显卡是16G,废话不说,直接上图在这里插入图片描述
kaggle踩过的坑:
配置文件,数据集(只读文件)放在/kaggle/input 里面
读写文件放在/kaggle/working之中
在这里插入图片描述

Colab

colab比kaggle好的一点是,文件可以通过goole drive这样修改文件 上传文件的效率要高很多。
缺点是,第一次使用的显卡是p100,基本后来无法使用到了,完全看运气,使用时间久了就会给你K卡,速度要慢很多,下面的图是算好的,没有被安排K卡
在这里插入图片描述
在这里插入图片描述
使用colab 挂载gooledirve的话需要进行验证,这个自行百度,然后官方文档也有教程,就不多说

百度aistudio

百度studio缺点就是notebook只支持飞浆的框架,但是终端的话可以自由发挥。个人而且百度的显卡配置比colab和kaggle配置都要高,缺点的话就是虚拟机共享内存太低了,这个真的得吐槽
在这里插入图片描述
百度做的很好的一点就是文件夹的处理,支持在线编译,这个功能做的要比kaggle,好很多,还有不好的话就是数据集只能加载两个,限制有点厉害,不过显卡是真香,现在百度对其他框架的限制比较狠,已经无法白嫖了,除非去学习飞浆框架,建议大家还是使用colab。

### 如何检查服务器中空闲的GPU数量 为了确定服务器中的空闲GPU数量,可以采用多种方法来评估各个GPU的工作负载以及资源使用状况。一种有效的方式是通过命令行工具`nvidia-smi`配合脚本处理来完成这一目标。 对于Linux环境下的Ubuntu服务器而言,可以通过执行特定指令获取有关GPU及其显存使用的即时数据[^1]。具体来说,借助Python编写一段小程序能够自动化地识别并统计出哪些GPU目前处于低负荷或未被占用的状态。下面给出了一段基于Python编写的代码片段用于检测空闲GPU: ```python import os import numpy as np def get_free_gpus(): # 使用 nvidia-smi 命令查询各 GPU 显存量,并过滤得到可用显存量信息 os.system('nvidia-smi -q -d Memory | grep -A4 GPU | grep Free > tmp') # 解析临时文件内容,提取每张 GPU 上剩余显存量数值列表 free_memory = [int(line.split()[2]) for line in open('tmp', 'r').readlines()] # 清理不再需要的临时文件 os.remove('tmp') # 定义阈值(单位 MB),超过此值即认为该 GPU 是 "空闲" 的 threshold_mb = 5000 # 统计满足条件的 GPU 数量 idle_count = sum([mem >= threshold_mb for mem in free_memory]) return idle_count ``` 上述函数定义了一个名为 `get_free_gpus()` 的功能模块,它会调用系统命令收集关于所有已安装NVIDIA GPU的信息,特别是它们各自的自由显存量。之后依据预设的一个最低限度——在这个例子中设定为5GB (5000MB),判断一张GPU是否可视为“空闲”。最后返回符合条件的GPU总数作为结果。 值得注意的是,在实际应用过程中可以根据具体情况调整这个阈值参数以适应不同的需求场景。此外,考虑到不同应用程序可能对GPU计算能力和显存有不同的偏好倾向[^2],因此建议根据具体的业务逻辑进一步优化判定标准。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值