自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

原创 IJCAI2018 | SFP软剪枝通道裁剪算法

论文:Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks 论文:Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks 论...

2020-05-20 18:03:06 31 0

原创 CenterLoss | 减小类间距离
原力计划

1.centerloss原理 centerloss中心损失它仅仅用来减少类内的差异,而不能有效增大类间的差异性。下图中,图(a)表示softmax loss学习到的特征描述 。图(b)表示softmax loss + center loss 学习到的特征描述,他能把同一类的样本之间的距离拉近一些,...

2020-05-13 22:54:14 72 0

原创 FG2020 | 软门控信号优化shortcut

https://arxiv.org/pdf/2002.11098.pdf 1.优化shortcut 现有的很多优秀的人体姿态估计网络都用到了类似Hourglass框架,该架构由多个如下图所示的编码器+解码器组合而成,且该框架内部有一个约定是下图中的跳跃连接能够有效提升网络性能。而本文对这种跳跃连接...

2020-05-13 22:53:34 58 0

原创 知识蒸馏 | 模型压缩利器_良心总结
原力计划

1.什么是知识蒸馏 最近利用知识蒸馏的方法,对业务中的性能有了可观的提升,因此在这里总结一波。本文主要从宏观的角度分析一下各个蒸馏算法的蒸馏方式,具体细节可以根据兴趣阅读论文~ 知识蒸馏是一种模型压缩常见方法,用于模型压缩指的是在teacher-student框架中,将复杂、学习能力强的网络学到...

2020-05-03 15:37:29 268 0

原创 ICLR 2017 | AT_注意力引导的知识蒸馏
原力计划

ICLR2017 | Paying More Attention to Attention https://github.com/szagoruyko/attention-transfer 1.注意力机制 注意力在人类视觉体验中起着至关重要的作用。如下图所示,以图像分类为例,注意力地图展示了学习完...

2020-03-28 21:21:47 164 0

原创 CVPR 2019 | VID_最大化互信息知识蒸馏
原力计划

CVPR 2019 | Variational Information Distillation for Knowledge Transfer https://github.com/qiu931110/RepDistiller 1.互信息 在这篇论文中,作者提出了一种新的知识蒸馏形式,该方法将知识...

2020-03-28 21:21:18 194 0

原创 CVPR 2019 | SP_相似性保存知识蒸馏

CVPR 2019 | Similarity-Preserving Knowledge Distillation 1.保持相似性知识蒸馏(SPKD) 在这篇论文中,作者提出了一种新的知识蒸馏形式,该方法是作者观察到相似语义的输入往往会使得神经网络输出相似的激活模式这一现象启发得到的。该知识蒸馏方法...

2020-03-28 21:20:44 143 0

原创 ECCV2018 | PKT_概率知识蒸馏

ECCV2018 | Learning Deep Representations with Probabilistic Knowledge Transfer https://github.com/passalis/probabilistic_kt 1.传统知识蒸馏 最早的知识蒸馏方法专门针对分类任...

2020-03-20 22:03:24 103 0

原创 CVPR2019 | 关系型知识蒸馏法

CVPR 2019 | Relational Knowledge Distillation https://github.com/HobbitLong/RepDistiller 1.蒸馏学习 由于大模型的拟合能力强,但计算效率低耗时大,而小模型的拟合能力弱,计算效率高。基于该特征,蒸馏学习的目的是...

2020-03-17 23:16:48 231 0

原创 工程Trick | 合并BN层加速前向推理

1.BatchNorm 在训练深度网络模型时,BN(Batch Normalization)层能够加速网络收敛,并且能够控制过拟合,一般放在卷积层之后。如下示意图所示,BatchNorm是以通道为单位,对当前通道中所有的N、H、W做归一化。 BN 层将特征归一化后,能够有效解决由于特征分布不均匀...

2020-03-13 20:58:49 37 0

原创 CVPR 2020 | 模型压缩新范式_滤波器嫁接技术

CVPR 2020 | Filter Grafting for Deep Neural Networks https://github.com/fxmeng/filter-grafting 1.滤波器嫁接动机 本文提出了一种全新的学习范式:滤波器嫁接,用于提高神经网络的特征表达能力。构建滤波器嫁接...

2020-03-08 14:47:21 230 0

原创 CVPR 2018 | CPN_COCO2017姿态估计冠军解决方案

CVPR 2018 | Cascaded Pyramid Network for Multi-Person Pose Estimation https://github.com/chenyilun95/tf-cpn 1.文章概述 本文提出了一种级联金字塔网络CPN,该网络由全局金字塔网络(Glob...

2020-03-06 21:34:44 88 0

原创 CVPR2017 | G-RMI_Google大佬构建的姿态估计baseline

CVPR2017 Google | Towards accurate multi-person pose estimation in the wild Official Code: pytorch 1.文章概述 正如文章中提到的in the wild,本文的目的是利用top-down类姿态估计算法...

2020-03-06 20:56:50 173 0

原创 CVPR 2019 | MSPN 重新思考多阶段人体姿态估计网络

CVPR 2019 | Rethinking on Multi-Stage Networks for Human Pose Estimation Official Code: pytorch 1.重新划分人体姿态估计网络类别 bottom-up and top-down: 现有的人体姿态估计网络综...

2020-03-01 11:58:40 197 0

原创 SAGANPose | 隐式结构化对抗人体姿态估计网络

Adversarial PoseNet: A Structure-aware Convolutional Network for Human Pose Estimation Official Code: pytorch 1.背景分析 关键点遮挡和人体重叠会导致人体姿态估计的难度增大,在这种情况下,...

2020-02-24 22:20:47 155 0

原创 SGANPose | 自对抗人体姿态估计网络

Self Adversarial Training for Human Pose Estimation Official Code: pytorch 1.出发点 由于人体的遮挡和拥挤等现象,现有的人体姿态估计网络很难解决此类情况下的准确估计,且此类现象会导致网络估计的关键点不符合正常的人体姿态,失...

2020-02-24 21:59:46 1167 0

原创 DirectPose | 首个 检测&关键点 回归网络

DirectPose: Direct End-to-End Multi-Person Pose Estimation 论文地址:https://arxiv.org/pdf/1911.07451.pdf 1.出发点 最近,anchor-free的思想在CV的各个方向都大放异彩,尤其是目标检测领域。多...

2020-02-21 20:01:25 773 2

原创 UDP无偏数据处理 | 人体姿态估计通用trick

The Devil is in the Details: Delving into Unbiased Data Processing for Human Pose Estimation github地址 1.使用连续度量标准 数据转换是指在不同的坐标系之间对关键点位置进行裁剪、旋转、调整大小、翻转...

2020-02-14 20:19:36 153 0

原创 基于CNN的2D多人姿态估计论文综述

bottom up系列算法(直接获取全图人体关键点): 1.Openpose(coco2016关键点冠军,利用paf进行group) 2.Lightweight OpenPose(轻量级Openpose) 3.Associative Embedding (关键点分组编码思想) 4.Pose Pro...

2020-02-13 19:00:46 559 0

原创 动手学习深度学习 | 笔记汇总

1.笔记1 (1) pytorch相关类的学习 pytorch中的参数类——torch.nn.parameter pytorch中的顺序容器——torch.nn.Sequential pytorch中的神经网络模块基础类——torch.nn.Module pytorch中的神经网络子模块(线性模块...

2020-02-13 11:48:05 99 0

原创 动手学习深度学习 | 语言模型和循环神经网络笔记

0.文本处理整体概况 step1:对原始数据进行分词 step2:对分词后的数据进行去重编号,得到[词语to序号]的列表,和[序号to词语]的字典。将这两部分用作后续训练循环神经网络的数据集。 step3:通过一些采样方法对构建的数据集进行采样,得到训练的批次。常见的采样方法有随机采样和相邻采样。...

2020-02-13 11:40:44 72 0

原创 动手学习深度学习 | 部分python函数详解

(1):维度dim,保持原有维度keepdim 下面通过图像的形式直观的展示了这两个参数的作用。 X = torch.tensor([[1, 2, 3], [4, 5, 6]]) print(X.sum(dim=0, keepdim=True)) print(X.sum(dim=1, keepdi...

2020-02-13 11:01:12 219 0

原创 pytorch中的参数类——torch.nn.parameter

1.torch.nn.parameter概要 pytorch官网对torch.nn.parameter的描述如下。 torch.nn.parameter是一个被用作神经网络模块参数的tensor。这是一种tensor的子类。 parameters是张量的子类,当与模块s一起使用时,它们有一个非常...

2020-02-13 10:59:52 415 0

原创 pytorch中的神经网络子模块(线性模块)——torch.nn.Linear

pytorch中的线性模块的实现如下,在init函数中定义weight值和bias值。 class Linear(Module): __constants__ = ['bias', 'in_features', 'out_features&...

2020-02-13 10:59:15 129 0

原创 pytorch中的神经网络模块基础类——torch.nn.Module

1.torch.nn.Module概要 pytorch官网对torch.nn.Module的描述如下。 torch.nn.Module是所有的神经网络模块的基类,且所有的神经网络模块都可以包含其他的子神经网络模块,这些子神经网络模块可以作为类的属性赋值。 2.torch.nn.Module.pa...

2020-02-13 10:57:52 75 0

原创 pytorch中的顺序容器——torch.nn.Sequential

1.torch.nn.Sequential概要 pytorch官网对torch.nn.Sequential的描述如下。 使用方式: # 写法一 net = nn.Sequential( nn.Linear(num_inputs, 1) # 此处还可以传入其他层 ) # ...

2020-02-10 21:02:49 148 0

原创 基于CNN的2D单人体姿态估计论文综述

1.DeepPose(谷歌大佬首次提出人体关键点解决方案) CVPR2014 Google | DeepPose: Human Pose Estimation via Deep Neural Networks 3rdParty Code:pytorch 3rdParty Code:chainer ...

2020-02-06 20:21:56 1541 1

原创 数字图像处理 | 对比度在图像中起到什么作用

你真的了解对比度吗?对比度是数字图像中非常基本的概念,一幅图像中明暗区域最亮的白和最暗的黑之间不同亮度层级的测量,即指一幅图像灰度反差的大小。直白的说就是:对比度大整体的色彩更鲜艳,对比度小色彩感更平淡。接下来我们用像素直方图的例子来形象的展示对比度大小在图像上的差异。 1.整体实现代码 from...

2020-01-06 22:10:26 136 0

原创 CVPR2019 | CrowdPose:拥挤人体关键点benchmark

https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch https://arxiv.org/pdf/1812.00324.pdf 1.传统单人姿态估计loss 传统的单人姿态估计模型的loss(以MSE均方误差为例),对于每个关键点而言,传统的计算...

2019-12-29 17:03:18 170 0

原创 pytorch | 文档学习_持续更新

1.自动求导机制 每一个tensor都有一个required_grad字段,该字段能够从梯度计算中以最小计算为单位对计算图进行操作,更加灵活效率更高。 某个tensor的来源中,只要有一个tensor的required_grad字段为True,则当前tensor的required_grad为Tr...

2019-12-18 19:28:29 51 0

原创 C语言 | 解析json

// 用cjson.c和cjson.h读取json文件,保存json文件 #include "cJson.h" /* // 示例json,名称为1.json [ { "ImgName":"abc.jpg" ...

2019-12-13 21:54:53 67 0

原创 DIoU YOLOv3 | AAAI 2020:更加稳定有效的目标框回归损失

DIoU要比GIou更加符合目标框回归的机制,将目标与anchor之间的距离,重叠率以及尺度都考虑进去,使得目标框回归变得更加稳定,不会像IoU和GIoU一样出现训练过程中发散等问题。 https://arxiv.org/pdf/1911.08287.pdf https://github.com/...

2019-11-30 22:17:14 3235 3

原创 Anchor Loss | ICCV2019,优化分类性能

本文提出了一种基于样本预测困难度动态调整交叉熵的损失函数,它根据预测的相对困难程度来自动调节损失的大小。 在本文中,我们将介绍anchor loss,并解释图像分类中anchor loss。首先,我们定义了预测的困难,并给出了相关的例子。然后给出了锚失量函数的广义形式。并通过数值的形式介绍了anc...

2019-11-24 17:17:33 183 2

原创 Giou YOLOv3 | CVPR2019,通用,更优的检测框评价指标

本文提出的GIou损失函数,是一种目标检测领域用于回归目标框损失函数。该Trick适用于任何目标检测算法。本文以YOLOv3为例进行阐述。 https://giou.stanford.edu/GIoU.pdf https://github.com/qiu931110/g-darknet 1.MSE...

2019-11-02 10:24:52 1524 4

原创 Guassian YOLOv3 | ICCV2019,更快更强的YOLOv3

在目标检测的落地项目中,实时性和精确性的trade-off至关重要,而YOLOv3是目前为止在这方面做得最好的算法。本文通过高斯分布的特性,改进YOLOv3使得网络能够输出每个检测框的不确定性,从而提升了网络的精度。 1.YOLOv3简介 如下图a所示,为YOLOv3的网络架构。 YOLOv3使用...

2019-10-27 17:21:06 3235 10

原创 【姿态估计】 | DARK——人体姿态估计通用trick

https://arxiv.org/pdf/1910.06278.pdf 关键点标签编码(encoding) 训练人体姿态估计网络时,考虑到训练代价,通常会将将输入图片做降采样,在降采样后的分辨率上进行训练。为了网络能够以热度图为标签进行训练,需要将基于原图分辨率的关键点坐标,转换为降采样后分...

2019-10-24 07:41:54 128 0

原创 CV领域的注意力机制综述

注意力机制在卷积网络的优化中,以及被广泛的使用。下面介绍几种非常著名的,应用于特征提取网络的注意力机制。 SEnet(https://arxiv.org/abs/1709.01507 ) SEnet(Squeeze-and-Excitation Network)考虑了特征通道之间的关系...

2019-10-19 10:40:25 646 1

原创 【2019 | 知识蒸馏】Fast Huamn Pose Estimation

现有的人体姿态估计网络,想要到达较好的效果,需要对网络进行堆叠,不论是Hourglass,CPN,HRnet等优秀的网络都有这个特性。但在实际应用时,效率是一个不可避免的问题。因此,本文提出了一种新的快速姿态蒸馏(FPD)模型学习策略。具体来说,FPD训练了一个轻量级的姿态识别神经网络架构,能够以...

2019-10-13 11:14:19 359 0

原创 C语言 | 函数内修改数组值(指针的应用)

#define OK 1 int RetArr(ivs_sint32_t *a) { a[0] = 2; a[1] = 3; return OK; } int main() { int out_a[2] = { 0 }; RetArr(out_a); for (int i = 0;...

2019-10-05 10:56:54 1957 0

原创 人体姿态估计 | 七篇你必须仔细阅读的论文

https://mp.csdn.net/mdeditor/100601750 本文重新思考了这种多阶段策略,首先文章分析了一下,single-stage策略,典型的mutil-stage网络,hourglass,为什么叫他

2019-09-08 00:31:30 534 0

提示
确定要删除当前文章?
取消 删除