机器学习算法 | PCA(主成分分析)降维算法
一:PCA算法目的根据样本矩阵X={x1,x2,…, Xm},以及当前样本空间中样本个数N,求得样本协方差矩阵XXT,中的最大的K个特征向量,并且利用这K个特征向量组成的矩阵进行低纬度降维,实现数据的主成分分析。二:PCA降维的整体步骤(1)对原始数据减去平均值,实现去中心化。(2)求出样本空间中N个样本的样本协方差矩阵(XXT)。(3)利用SVD奇异值分解(适用于任意矩阵) 或 特征值分解(只适用于方阵)对样本协方差矩阵进行特征向量,特征值的分解。(4)对特征值进行降序排列,选出最大的K个,并