顺时针旋转N*N阶矩阵储存的图片

一道笔试题:顺时针旋转N*N阶矩阵储存的图片:

比如 1 2 3

         4  5 6

         7 8 9

旋转后变为:

        7 4 1

       8 5 2

       9 6 3 

可以把该问题分解为一层一层的来做。比如上列子中,最外层的1,3,9,7轮流交换。2,6,8,4轮流交换。后者对应的坐标为[0][1]  [1][2] [2[1]  [1][0]。对一般的a[i][j]来说,对应的另外三个元素就是:a[j][n-1-i],a[n-i-1][n-j-1],a[j][i]。

接下来就是要确定i和j的取值范围:对应i来说,代表的是行数,行数i<n/2,比如像上面的三行的话,只需要旋转外面的一层, 也就是i等于0就行了。

对于j代表的是列数,i<=j<n-1-i;。自己画个图理解下,比如说上面的第二层,i=1,j=1,范围是【1,n-2)。

只要做题是把这两个问题理清楚了。不难写出如下代码:

    for (i=0;i <n/2;i++)
    {
        int m=n-i*2;
        if (m==1) break;

        for (j=i;j <m+i-1;j++)
        {
            int tmp=a[i][j];
            a[i][j]=a[n-j-1][i];
            a[n-j-1][i]=a[n-i-1][n-j-1];
            a[n-i-1][n-j-1]=a[j][n-i-1];
            a[j][n-i-1]=tmp;
        }
    }

 与此题类似的是,顺时针输入一个矩阵的元素:这道题的难度在于代码中会包含很多个循环,而且还有多个边界条件需要判断。

void printsqure(int (*a)[3],int n)
{
    int i=0;
    int  max=n/2;
    while(i<=max) 
    { 
            int  j=i;
            int k=0;
            for (k=j;k<=n-i-1;k++)
            {
                cout<<a[i][k];
            }
            for (k=i+1;k<=n-i-1;k++)
            {
                cout<<a[k][n-1-i];
            }
            for (k=n-2-i;k>=i;k--)
            {
                cout<<a[n-1-i][k];
            }
            for (k=n-2-i;k>=i+1;k--)
            {
                cout<<a[k][i];
            }        
            i++;
    }
 }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值