题目描述
大家都知道"超级玛丽"是一个很善于跳跃的探险家,他的拿手好戏是跳跃,但它一次只能向前跳一步或两步。有一次,他要经过一条长为n的羊肠小道,小道中有m个陷阱,这些陷阱都位于整数位置,分别是a1,a2,…am,陷入其中则必死无疑。显然,如果有两个挨着的陷阱,则玛丽是无论如何也跳过不去的。
现在给出小道的长度n,陷阱的个数及位置。求出玛丽从位置1开始,有多少种跳跃方法能到达胜利的彼岸(到达位置n)。
输入
第一行为两个整数n,m
第二行为m个整数,表示陷阱的位置
输出
一个整数。表示玛丽跳到n的方案数
样例输入
4 1
2
样例输出
1
提示
数据规模和约定
40>=n>=3,m>=1
n>m;
陷阱不会位于1及n上
思路: 个人觉得很像楼梯问题,那么就有两种情况,一次跳两个或者一次跳一个,边界条件就是,踩到坑了就返回,或者跳过了(我也不知道为什么会跳过。。操作的玩家是真的菜)
package javas.weleness.超级玛丽;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt(), m = scanner.nextInt();
int[] f = new int[41];
for (int i = 0; i <m; i++) {
int x = scanner.nextInt();
f[x] = 1;
}
int value = jump(1,n,f);
System.out.println(value);
}
private static int jump(int way,int n,int[] f) {
if(way == n) return 1;
if(way > n) return 0;
if(f[way]== 1) return 0;
return jump(way+1,n,f)+jump(way+2,n,f);
}
}