假定有n个城堡,编号为1至n,有的城堡之间有道路直接相连,有的城堡之间没有道路直接相连。马里奥现在准备从一个城堡出发前往另一个城堡,它有一个魔法棒,可以瞬时通过一条道路,即以0时间通过这条道路,但魔法棒最多只能用一次。马里奥想以最短的时间到达目的地,请编写程序为马里奥选定一条路线以及在什么地方使用魔法棒。假定所有道路为双向,保证从起点肯定能到达目的地。
#include<cstring>
#include<iostream>
#include<vector>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
const int MAXSIZE = 10000 + 1;
const int INVALID = 0x7FFFFFFF;
vector<pair<int, int>> adjacencyList[MAXSIZE];
int n, m;
int start, endPoint;
pair<int, int> edges[MAXSIZE];
void setDistance(int from, int to, int distance) {
for(auto& adjacent:adjacencyList[from]) {
if(adjacent.first == to) {
adjacent.second = distance;
return;
}
}
adjacencyList[from].push_back({to, distance});
}
int getDistance(int from, int to) {
for(auto& adjacent:adjacencyList[from]) {
if(adjacent.first == to) {
return adjacent.second;
} else if(adjacent.first > to) {
return INVALID;
}
}
return INVALID;
}
void init() {
scanf("%d %d %d %d", &n, &start, &endPoint, &m);
for(int i=0;i<m;++i) {
int from, to, distance;
scanf("%d %d %d", &from, &to, &distance);
adjacencyList[from].push_back({to, distance});
adjacencyList[to].push_back({from, distance});
edges[i] = {from, to};
}
for(int i=1;i<=n;++i) {
sort(adjacencyList[i].begin(), adjacencyList[i].end(),
[](const auto& lhs, const auto& rhs) -> bool { return lhs.first < rhs.first; });
}
}
// 普通的Dijkstra已经不能在战场上挥斥方遒了
vector<int> dijkstra(int startPoint) {
vector<int> distance(n+1, INVALID);
vector<bool> visited(n+1, false);
for(int i=1;i<=n;++i) {
distance[i] = getDistance(startPoint, i);
}
distance[startPoint] = 0;
visited[startPoint] = true;
for(int j=0;j<n;++j) {
int minDis = INVALID;
int minPoint = -1;
for(int i=1;i<=n;++i) {
if(!visited[i] && distance[i] < minDis) {
minDis = distance[i];
minPoint = i;
}
}
if(minPoint == -1) break;
visited[minPoint] = true;
for(int i=1;i<=n;++i) {
int curDis = getDistance(i, minPoint);
if(!visited[i] && curDis != INVALID && curDis + minDis < distance[i]) {
distance[i] = curDis + minDis;
}
}
}
return distance;
}
struct Node {
int point, cost;
bool operator < (const Node & rhs) const {
if(cost==rhs.cost) return point<rhs.point;
return cost > rhs.cost;
}
};
// 堆优化Dijkstra算法简单好用
vector<int> dijkstra_heap(int startPoint) {
int i = 0;
vector<int> dis(n+1, INVALID);
dis[startPoint] = 0;
// 用优先队列优化
priority_queue<Node> q;
q.push({startPoint,dis[startPoint]});
while(!q.empty()) {
Node node = q.top();
q.pop();
for(i=0;i<adjacencyList[node.point].size();i++) {
auto y = adjacencyList[node.point][i];
int point = y.first;
int cost = y.second;
if(dis[point]>node.cost+cost) {
dis[point]=node.cost+cost;
q.push({point,dis[point]});
}
}
}
return dis;
}
int main() {
init();
int minTime = INVALID;
int changeStart = -1;
vector<int> startInStart = dijkstra_heap(start);
vector<int> startInEnd = dijkstra_heap(endPoint);
for(int i=0;i<m;++i) {
int from = edges[i].first;
int to = edges[i].second;
if(startInStart[from] == INVALID || startInEnd[to] == INVALID) {
continue;
}
int time = startInStart[from] + startInEnd[to];
if(time < minTime || (time == minTime && min(from, to) < changeStart)) {
minTime = time;
changeStart = min(from, to);
}
}
cout<<minTime<<" "<<changeStart<<endl;
return 0;
}
7-47 排列论文
给定编号为1至n的n篇论文,以及m个形如d, u (1≤d,u≤n,d=u)的引用关系,表示论文论文d中定义的一个名词在论文u中被引用。现在要对这n篇论文重新排列,排列方案须满足如下要求:一篇论文引用的名词必须在排在他前面的论文中被定义过。
请编写程序粗略计算都有多少种满足要求的方案,如果无满足要求的方案则输出0,如果有唯一方案则输出1,如果有多种方案则输出2。
#include<iostream>
#include<queue>
#include<vector>
using namespace std;
int func(vector<vector<int>> &edge,vector<int>& in){
if(edge.size()==2) return 1;
else{
int flag=0;
queue<int> q;
for(int i=1;i<edge.size();i++){
if(in[i]==0){
q.push(i);
}
}
if(q.size()==0) return 0;
int sum=0;
while(!q.empty()){
int n=q.size();
sum+=n;
if(n>1) flag=1;
while(n--){
int t=q.front();
q.pop();
for(auto &e:edge[t]){
in[e]-=1;
if(in[e]==0){
q.push(e);
}
}
}
}
if(sum<edge.size()-1) return 0;
if(flag) return 2;
return 1;
}
}
int main(){
int n,m,a,b;
while(cin>>n>>m){
vector<vector<int>> edge(n+1);
vector<int> in(n+1,0);
while(m--){
cin>>a>>b;
edge[a].push_back(b);
in[b]+=1;
}
cout<<func(edge,in)<<endl;
}
}
7-48 二叉树最长匹配前后缀路径
假定二叉树结点值为不等于0的整数。我们将二叉树中以根结点为起点、非叶结点为终点的路径称为“前缀路径”,以非根结点为起点、叶结点为终点的路径称为“后缀路径”。我们称前缀路径p和后缀路径q为最长匹配前后缀路径,如果p和q满足下列条件:
(1)路径p和q同在一条以根为起点、以叶为终点的路径里;
(2)路径p和q包含的结点序列值相等;
(3)路径p和q是整个二叉树中所有满足条件(1)(2)的最长者
#include<iostream>
#include<vector>
using namespace std;
struct Node{
int val;
struct Node* left;
struct Node* right;
Node(int n){
val=n;
left=nullptr;
right=nullptr;
}
};
void create(Node*& root){
int t;
cin>>t;
if(t==0) return ;
root=new Node(t);
create(root->left);
create(root->right);
}
void get(Node* root,vector<vector<int>>&v,vector<int>& temp){
temp.push_back(root->val);
if(!root->left&&!root->right) v.push_back(temp);
if(root->left) get(root->left,v,temp);
if(root->right)get(root->right,v,temp);
temp.pop_back();
}
int func(Node* root){
if(root==nullptr) return -1;
vector<vector<int>> v;
vector<int> temp;
get(root,v,temp);
int ret=-1;
for(auto &vv:v){
vector<int> next(vv.size());
next[0]=0;
int j=0;
for(int i=1;i<vv.size();i++){
while(j!=0&&vv[i]!=vv[j]) j=next[j-1];
if(vv[i]==vv[j]) j++;
next[i]=j;
}
if(ret==-1||ret<next[vv.size()-1]-1) ret=next[vv.size()-1]-1;
}
return ret;
}
int main(){
int t;
cin>>t;
while(t--){
Node* root=nullptr;
create(root);
cout<<func(root)<<endl;
}
return 0;
}
7-49 特殊最小成本修路
n个城镇之间目前有一些道路连接,但道路都是年久失修的土道。现在政府准备将其中一些土道改造为标准公路,希望标准公路能够将所有城镇连通且总成本最小,但其中有一个城镇比较特殊,受地形等限制,最多只能有两条标准公路通过该镇。请编写程序,找出一种满足上述条件的、总成本最小的改造方案,若不存在改造方案,则亦能识别。假定道路是双向的。
#include <algorithm>
#include <iostream>
using namespace std;
typedef struct {
int u;
int v;
int w;
} Road;
Road road[51];
int f[51];
bool cmp(Road r1, Road r2) { return r1.w < r2.w; }
void init() {
for (int i = 0; i < 51; i++) {
f[i] = i;
}
}
int find(int x) {
if (x == f[x])
return x;
return f[x] = find(f[x]);
}
int merge(int x, int y) {
int a = find(x);
int b = find(y);
if (a != b) {
f[b] = a;
return 1;
}
return 0;
}
int main() {
int n, v, e;
while (scanf("%d %d %d", &n, &v, &e) != EOF) {
init();
for (int i = 0; i < e; i++) {
scanf("%d %d %d", &road[i].u, &road[i].v, &road[i].w);
}
int cnt = 0, sum = 0, num = 0;
sort(road, road + e, cmp);
for (int i = 0; i < e; i++) {
if ((road[i].u == v || road[i].v == v) && cnt < 2) {
if (merge(road[i].u, road[i].v)) {
sum += road[i].w;
cnt++;
num++;
}
} else if (road[i].u != v && road[i].v != v) {
if (merge(road[i].u, road[i].v)) {
sum += road[i].w;
num++;
}
}
if (num == n - 1)
break;
}
if (num == n - 1 && cnt <= 2)
printf("%d\n", sum);
else
printf("-1\n");
}
return 0;
}
7-50 扫雷游戏
扫雷是一款经典游戏,也是Windows操作系统最早引入的一款游戏,其最为经典的版本是Windows XP操作系统自带的扫雷游戏,曾风靡一个时代,是一代人的永恒记忆。
简单来说,其游戏界面由n行m列方格组成,其中k个方格后面隐藏着地雷。当用户点击一个方格时:
(1)如果该方格后面隐藏着地雷,则游戏结束,用户失败。
(2)如果该方格不是地雷,则该方格被打开:
- 若该方格与地雷相邻(即该方格上、下、左、右、左上、左下、右上、右下相邻的8个方格内有地雷),则该方格处显示一个数字,表示其周围8个方格中的地雷数。
- 若该方格未与地雷相邻(即该方格周围8个格子内没有地雷),则该方格的未被打开的邻居(即与该方格上、下、左、右、左上、左下、右上、右下相邻的方格)、邻居的邻居、邻居的邻居的邻居……都会被逐级打开,直到某方格与地雷相邻。这期间每个方格的处理方式同(2)。
(3)当所有没隐藏地雷的方格均被打开(即所有没打开的方格后都有地雷),则游戏结束,用户获胜。
请编写程序从初始界面开始,对于一系列用户的点击,求出点击之后的游戏界面。未打开的方格用-1表示,即游戏初始时为n行m列-1。已打开且未与雷相邻的方格用0表示,已打开且与雷相邻的方格用数字a (1≤ a ≤ 8)表示,即与之相邻的地雷数。
#include<stdio.h>
#define Rows 22
#define Cols 22
int n,m,k,l;
int data[Rows][Cols]; //数据数组
int game[Rows][Cols]; //玩家界面数组
void Init();
void disp();
void dispdata();
void setboom(int a,int b);
void setnumber();
void swap(int x,int y);
int tongji();
//初始化玩家界面
void Init()
{
for (int i = 0; i <Rows; i++)
{
for (int j = 0; j <Cols; j++)
{
game[i][j] = -1;
}
}
}
//打印玩家界面
void dispgame()
{
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d ",game[i][j]);
}
printf("\n");
}
}
//打印后台数据
void dispdata(){
for(int i=0;i<=n+1;i++){
for(int j=0;j<=m+1;j++){
printf("%d ",data[i][j]);
}
printf("\n");
}
}
//设置炸弹
void setboom(int a,int b)
{
data[a+1][b+1]=-1; //data数组打印出来的是从下标1开始的
}
//将后台数据与游戏界面交互
void swap(int x,int y)
{
if(game[x][y]!=-1||x<1||x>n||y<1||y>m){
return ;
}else{
game[x][y]=data[x][y];
}
if(game[x][y]==0){
for(int i=x-1;i<=x+1;i++){
for(int j=y-1;j<=y+1;j++){
swap(i,j);
}
}
}
}
//设置后台元素数据
void setnumber()
{
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(data[i][j]!=-1)
{
if(data[i-1][j-1]==-1)
data[i][j]++;
if(data[i-1][j]==-1)
data[i][j]++;
if(data[i-1][j+1]==-1)
data[i][j]++;
if(data[i][j-1]==-1)
data[i][j]++;
if(data[i][j+1]==-1)
data[i][j]++;
if(data[i+1][j-1]==-1)
data[i][j]++;
if(data[i+1][j]==-1)
data[i][j]++;
if(data[i+1][j+1]==-1)
data[i][j]++;
}
}
}
}
//统计还有多少个位置没开
int tongji()
{
int sum=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(game[i][j]==-1){
sum++;
}
}
}
return sum;
}
int main()
{
Init();
scanf("%d %d %d %d",&n,&m,&k,&l);//输入数据
if(n>=0&&n<=20&&m>=0&&m<=20&&k>=0&&k<=50&&l>=0&&l<=200){
//将炸弹保存进后台数组
for(int i=0;i<k;i++){
int a=0,b=0;
scanf("%d %d",&a,&b);
if(a>=0&&a<=n&&b>=0&&b<=m){
setboom(a,b);
}
}
//设置后台元素
setnumber();
//玩家操作
int x,y;
for(int i=0;i<l;i++){
scanf("%d %d",&x,&y);
//判断是否踩到雷
if(x>=0&&x<=n&&y>=0&&y<=m){
if(data[x+1][y+1]==-1){
printf("You lose\n");
break;
}
//判断重复输入
if(game[x+1][y+1]!=-1){
continue;
}else{
swap(x+1,y+1);
dispgame();
if((tongji())==k){
printf("You win\n");
break;
}else{
printf("\n");
}
}
}
}
}
return 0;
}