自己开发的博客网站,欢迎访问https://www.weiboke.online
#322. Coin Change
You are given coins of different denominations and a total amount of money amount. Write a function to compute the fewest number of coins that you need to make up that amount. If that amount of money cannot be made up by any combination of the coins, return -1.
Example 1:
Input: coins = [1, 2, 5], amount = 11
Output: 3
Explanation: 11 = 5 + 5 + 1
Example 2:
Input: coins = [2], amount = 3
Output: -1
Note:
- You may assume that you have an infinite number of each kind of coin.
##Approach
- 题目大意在coins中选若干可重复的数字和等于amount的最少的数量为多少。递推类型题, 如果前面有做了很多需要递推的题,那么看到这题基本是条件反射换汤不换药,我们设
dp[i]
表示此时到达i
需要的最少数量,我们还要初始化dp数组中的元素全为INF,所以可得到如下方程dp[i-coins[j]]=min(dp[i-coins[j]],dp[i]+1) 表示如果i可以到达i-coins[j],那么就要比较哪个更小了
,最后我直接返回dp[0],但是要先判断一下是否可达.
##Code
class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
vector<int>dp(amount + 1, INT_MAX);
dp[amount] = 0;
for (int i = amount; i >= 0; i--) {
for (int j = 0; j < coins.size(); j++) {
if (dp[i] < INT_MAX&&i - coins[j] >= 0) {
dp[i - coins[j]] = min(dp[i - coins[j]], dp[i] + 1);
}
}
}
return dp[0]==INT_MAX?-1:dp[0];
}
};