【HDU 2824 The Euler function】+ 欧拉函数

The Euler function

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6488 Accepted Submission(s): 2736

Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+….+ (b)

Input
There are several test cases. Each line has two integers a, b (2< a < b < 3000000).

Output
Output the result of (a)+ (a+1)+….+ (b)

Sample Input
3 100

Sample Output
3042

Source
2009 Multi-University Training Contest 1 - Host by TJU

题意 : (a) 1 ~ a 中与 a 互质的数的个数,求 (a) + (a + 1) + …(b)

思路 : 欧拉函数求质数~

AC代码:

#include<cstdio>
typedef long long LL;
const int K = 3e6 + 10;
int ol[K];
int main()
{
    int a,b;
    for(int i = 1; i < K; i++) ol[i] = i;
    for(int i = 2; i < K; i++)
        if(i == ol[i]) // i 为质数
            for(int j = i; j < K; j += i)
                ol[j] = ol[j] / i * (i - 1); // j 的因子有 i,欧拉函数
    while(scanf("%d %d",&a,&b) != EOF){
        LL cut = 0; for(int i = a; i <= b; i++) cut += ol[i];
        printf("%lld\n",cut);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值