OpenCV图像处理技术之阈值与平滑处理

本文介绍了如何通过像素级操作实现图像二值化,以及使用OpenCV的阈值处理函数,包括二值化、反二值化、截断、超阈值零处理和低阈值零处理。同时,讲解了自适应阈值和Otsu大津阈值方法,并提供了滑块调整阈值和平滑处理效果的示例,涉及的平滑处理包括均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波。
摘要由CSDN通过智能技术生成

 © Fu Xianjun. All Rights Reserved.所有素材来自于小傅老师。

如何用像素级操作,将peppa.jpg中像素值小于180的设置为黑色,大于等于180的的像素值设置为白色?

import cv2
img = cv2.imread("peppa.jpg",0)
h,w = img.shape
for i in range(h):
    for j in range(w):
        if img[i,j]<180:
            img[i,j]=0
        else:
            img[i,j]=255
cv2.imshow("binary",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

我们开始今天的学习!阈值与平滑处理

目标:

能够使用相关函数实现图像阈值处理

能够根据图像选择适合的方法进行阈值处理

能够使用相关函数实现图像平滑处理

能使用滑块进行平滑处理

Otsu大津

定义:根据当前图像给出最佳的类间分割阈值。

操作:遍历所有可能阈值,从而找到最佳的阈值。

ret, dst = cv2.threshold(src, thresh, maxval, type)

src: 输入图,只能输入单通道图像,通常来说为灰度图

dst: 输出图

thresh: 阈值

maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值

type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY;cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV

cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0

cv2.THRESH_BINARY_INV THRESH_BINARY的反转

cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变

cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0

cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

提问:如何用像素级操作,将peppa.jpg中像素值小于180的设置为黑色,大于等于180的的像素值设置为白色

import cv2
img = cv2.imread("peppa.jpg",0)
h,w = img.shape
for i in range(h):
    for j in range(w):
        if img[i,j]<180:
            img[i,j]=0
        else:
            img[i,j]=255
cv2.imshow("binary",img)
cv2.waitKey(0)
cv2.destroyAllWindows()

任务一:阈值处理

  • 值运算(threshold):二值化、反二值化、截断、超阈值零处理、低阈值零处理

ret,thresh1 = cv2.threshold(img,200,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,200,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,200,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,200,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,200,255,cv2.THRESH_TOZERO_INV)

  • 自适应阈值运算(adaptiveThreshold):

athdMEAN=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,7,5)
athdGAUS=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,5,3)
cv2.imshow("athMEAN",athdMEAN)
cv2.imshow("athGAUS",athdGAUS)

  • Otsu阈值运算:

  • ret,otsu=cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
    cv2.imshow("otsu",otsu)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

任务二:使用滑块调整阈值大小

import cv2
Value=0 #使用的阈值
def onValue(a):
    Value= cv2.getTrackbarPos(tValue, windowName)
    median = cv2.medianBlur(img, 2*Value+1) 
    cv2.imshow(windowName,median)
    
img = cv2.imread("peppa.jpg",0)
windowName = "Peppa"  
cv2.namedWindow(windowName)
cv2.imshow(windowName,img)
tValue = "Value"
v=cv2.createTrackbar(tValue, windowName,1, 100, onValue)
cv2.waitKey()
cv2.destroyAllWindows()

任务三:平滑处理

平滑处理:均值滤波、方框滤波、高斯滤波、中值滤波、双边滤波

img = cv2.imread("peppa_gaussian.jpg")
blur = cv2.blur(img, (7, 7))
box = cv2.boxFilter(img,-1,(7,7), normalize=True)  
gaussian = cv2.GaussianBlur(img, (7, 7), 10) 
median = cv2.medianBlur(img, 7)
bilater=cv2.bilateralFilter(img,9,75,75)
kernel = np.array((
        [-2, -1, 0],
        [-1,1,1],
        [0, 1, 2]), dtype="float32")
filter2D=cv2.filter2D(img,-1,kernel)#https://my.oschina.net/u/4306156/blog/3598055
cv2.imshow('img',img)
cv2.imshow('blur',blur)
cv2.imshow('box',box)
cv2.imshow('gaussian',gaussian)
cv2.imshow('median',median)
cv2.imshow('bilater',bilater)
cv2.imshow('filter2D',filter2D)
cv2.waitKey()
cv2.destroyAllWindows()

任务四:使用滑块调整平滑的效果

参照任务二 完成中值滤波的滑块调整

import cv2
Value=0 #使用的阈值
def onValue(a):
    Value= cv2.getTrackbarPos(tValue, windowName)
    median = cv2.medianBlur(img, 2*Value+1) 
    cv2.imshow(windowName,median)
    
img = cv2.imread("peppa.jpg",0)
windowName = "Peppa"  
cv2.namedWindow(windowName)
cv2.imshow(windowName,img)
tValue = "Value"
v=cv2.createTrackbar(tValue, windowName,1, 100, onValue)
cv2.waitKey()
cv2.destroyAllWindows()

  • 今天的学习到此结束了,今天木有任务噢!
  • 下次见!拜拜!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值