二叉树的先序、中序、后序的递归及非递归建立方法

I.                 总述

对于树的储存方式来讲,遍历方法可谓是树的精髓,没有一个好的遍历方法,一颗二叉树就是没有意义的。

II.               常见的三种二叉树遍历方法

A.    先序 先输出当前结点的值,若是当前结点由左儿子,则遍历左儿子,左儿子遍历完毕后,接着遍历右儿子。

B.     中序 若是当前结点由左儿子,则遍历左儿子,左儿子遍历完毕后,输出当前结点的值,接着遍历右儿子。

C.    后序 先遍历左右儿子,最后输出值。

III.              先序、中序、后序的递归建立

结点类型

typedefstruct node

{

    int data;

    struct node *lchild;

    struct node *rchild;

}BTree ,*BiTree ;

           先序:

         void PreOder ( BiTree T )

{

           if( T!=NULL )

         {

          cout<<T->data;

          PreOder(T->lchild);

          PreOder(T->rchild);

         }

}

中序

void InOder ( BiTree T )

{

    if( T!=NULL )

    {

        PreOder(T->lchild);

       cout<<T->data;

        PreOder(T->rchild);

    }

}

后序

void PostOder ( BiTree T )

{

    if( T!=NULL )

    {

        PreOder(T->lchild);

        PreOder(T->rchild);

        cout<<T->data;

    }

}

IV.             先序、中序、后序的非递归建立

为什么要使用非递归?

递归虽然很简洁,但并不是所有程序都能使用递归,而且递归的可读性极差,且执行效率不高,就此可以将递归程序设计成非递归的程序。

结点类型

typedefstruct node

{

    int data;

    struct node *lchild;

    struct node *rchild;

}BTree ,*BiTree ;

 

先序

voidPreOder ( BiTree T )

{

    BiTree stack[1000],p;       //定义结点类型指针栈

    int top=-1;

    if( T==NULL )

        return ;

    p = T;

    while( !(p==NULL&&top==-1)) 

    {

        while( p!=NULL )         //先左儿子

        {

            cout<<p->data;

            top++;

            stack[top]=p;

            p=p->lchild;

        }

        if( top<0 )

            return;

        else                     //后右儿子

        {

            p = stack[top];

            top--;

            p=p->rchild;

        }

    }

}

中序

中序遍历只需将先序的“cout<<p->data;”移至p = stack[top];p=p->rchild;间即可。

后序

voidPreOder ( BiTree T )

{

    BiTree stack[1000],p;       //定义结点类型指针栈

    int top=-1;

    if( T==NULL )

        return ;

    p = T;

    while( !(p==NULL&&top==-1)) 

    {

        while( p!=NULL )         //左孩子压栈   

        {

            top++;

            stack[top]=p;

            p=p->lchild;

        }

        if( top>-1 )            //栈不为空

            if( stack[top]>0 )  //第一次在栈中

        {

            p = stack[top]->rchild;   //指向右孩子

            stack[top] = -stack[top];  //置逆值,相当于第一次出栈,第二次        进栈,值改变了

        }

        else                    

        {

            p = -stack[top];         //第二次出栈

            top--;

            cout<<p->data;

            p=NULL;

        }

    }

}

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值