Java内存区域 与 内存溢出异常
运行时数据区域
- 线程私有区域:程序计数器,Java虚拟机栈,本地方法栈(其生命周期与相关线程有关,随线程而生,随线程而灭)
- 线程共享区域:Java堆,方法区,运行时常量池
程序计数器(线程私有)
- 由于JVM的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现,因此在任何一个确定的时刻,一个处理器都只会执行一条线程中的指令。为了切换线程后能恢复到正确的执行位置,每条线程都需要独立的程序计数器,各条线程之间计数器互不影响,独立存储。
- 程序计数器是一块较小的内存空间,可以说是当前线程所执行的字节码的行号指示器;如果当前线程正在执行的是一个Java方法,这个计数器记录的是正在执行的虚拟机字节码指令的地址;如果正在执行的是一个Native方法,这个计数器值为空
- 程序计数器内存区域是唯一一个在JVM规范中没有规定任何OOM情况的区域!
Java虚拟机栈(线程私有)
- 虚拟机栈描述的是Java方法执行的内存模型:每个方法执行的同时都会创建一个栈帧用于存储局部变量表,操作数栈,动态链接,方法出口等信息;每一个方法从调用直至执行完成的过程,就对应一个栈帧在虚拟机栈中出入栈的过程,生命周期与线程相同。
- 局部变量表:存放编译器的基本数据类型,对象引用;其所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在执行期间不改变局部变量表的大小
- 此区域一共会产生以下两种异常:
- 如果线程请求的栈深度大于虚拟机所允许的深度(-Xss设置栈容量),将会抛出StackOverFlowError异常
- 虚拟机在动态扩展时无法申请到足够的内存,会抛出OOM(OutOfMemoryError)异常
本地方法栈(线程私有)
- 虚拟机使用的Native方法服务
- 在HotSpot虚拟机中,本地方法栈与虚拟机栈是同一块内存区域
Java堆(线程共享)
- Java堆(Java Heap)是JVM所管理的最大内存区域,在JVM启动时创建,存放对象实例;所有的对象实例以及数组都要在堆上分配
- Java堆是垃圾回收器管理的主要区域,因此很多时候可以称之为"GC堆"。根据JVM规范规定的内容,Java堆可以处于物理上不连续的内存空间中。Java堆在主流的虚拟机中都是可扩展的(-Xmx设置最大值,-Xms设置最小值)。
- 如果在堆中没有足够的内存完成实例分配并且堆也无法再拓展时,将会抛出OOM
方法区(线程共享)
- 存储已被虚拟机加载的类信息、常量、静态变量、及编译器编译后的代码等数据。
- JVM规范规定:当方法区无法满足内存分配需求时,将抛出OOM异常
运行时常量池(方法区的一部分)
- 存放字面量(字符串,final常量,基本数据类型的值)与符号引用(类与结构的完全限定名,字段的名称和描述符,方法的名称和描述符)
Java堆溢出
- Java堆用来存储对象实例,不断地创建对象,那么在对象的数量达到最大堆容量后会产生内存溢出异常
public class Test {
static class OOMObject {
}
public static void main(String[] args) {
List<OOMObject> list =
new ArrayList<>();
while(true) {
list.add(new OOMObject());
}
}
}
- 分析问题的产生到底是出现了内存泄露(泄露对象无法被回收)还是内存溢出(内存对象还应该存活)
- 当发生内存泄露时,应该:
- 及时关闭流
- 及时关闭文件,使用时再创建对象
- 当发生内存溢出时,应该:
- 内存不够用,调大内存
- 正在存活的对象生命周期太长
虚拟机栈和本地方法栈溢出
- 们HotSpot虚拟机将虚拟机栈与本地方法栈合二为一,因此对于HotSpot来说,栈容量只需要由-Xss参数来设置
- 设置JVM参数
- -Xms:设置堆的最小值、
- -Xmx:设置堆最大值
- 关于虚拟机栈会产生的两种异常:
- 如果线程请求的栈深度大于虚拟机所允许的最大深度,会抛出StackOverFlow异常
- 如果虚拟机在拓展栈时无法申请到足够的内存空间,则会抛出OOM异常
观察StackOverFlow异常(单线程环境下)
JVM参数:-Xss128K
public class Test {
private int stackLength = 1;
public void stackLeak() {
stackLength++;
stackLeak();
}
public static void main(String[] args) {
Test test = new Test();
try {
test.stackLeak();
} catch (Throwable e) {
System.out.println("Stack Length: "+test.stackLength);
throw e;
}
}
}
如果是因为多线程导致的内存溢出问题,在不能减少线程数的情况下,只能减少最大堆和减少栈容量的方式来换取更多线程。