一、研究背景
铁路运输是现代货物运输的重要手段,是交通运输领域不可或缺的重要部分。对 于需要长途运输的煤、石油、矿石等战略物资和食品、百货等生活必需品,铁路运输 具有成本低廉、运量大、安全可靠的优势。据2014年~2016年《交通运输行业发展统计 公报》,近3年我国铁路货运量分别为38.13亿吨、33.58亿吨、33.32亿吨。由此可见, 铁路货物运输为我国社会主义市场经济的发展提供了有力保障,是国民经济的命脉。
列车节能降耗的手段多样,可以归纳为以下三类:1、优化列车时刻表,合理安排 行车计划,避免临时停车;2、提高车辆制造水平,提升牵引电传动系统等车载设备的 效率。装备车载储能装置,有效利用再生制动产生的能量;3、开展列车节能优化操纵 研究,通过优化得出列车节能最优操纵策略。从铁路运营者的角度,第三类方法是一 种成本较低的节能降耗手段,该方法对司机操纵提出了新的要求:不仅保证列车安全、 平稳运行,而且使得列车运行能耗最小。
二、粒子群优化算法简介
PSO算法基于一组在搜索空间中随机初始化的粒子。每个粒子代表一个候选溶液,其特征在于其位置和速度。该算法的目标是为搜索空间中的每个粒子找到最佳位置,以最小化或最大化目标函数。每个粒子的位置在每次迭代中都会根据其当前位置、速度以及总体中任何粒子到目前为止找到的最佳位置进行更新。
粒子群优化算法的大致流程如下:初始化→评估→更新速度→更新位置→迭代→输出。具体的算法细节可自行学习,在此不多赘述。
三、模型建立
通过确定满足优化和约束目标的最佳速度曲线,优化单列列车运行过程的能耗和准时性。为了使最优解满足线速限制和精确停车等要求,需要定义惩罚函数。停止误差(SE)和超速误差(OE)被添加到目标矢量中作为约束指标。在判断种群中两个粒子之间是否存在帕累托优势时,可以从两个层面进行比较。约束指标(OE, SE)优先进行比较,以确保最终解决方案是可行的。如果满足约束要求,则对其他优化指标进行比较。本文的仿真计算有数值计算精度误差值,因此本文允许生成的目标曲线有一定的停放误差,不影响实际使用。
间隔的长度记为s,列车运行期间的优化目标为缩短运行时间T,降低总牵引能量E,降低碰撞率Jerk。
其中x表示列车运行时的位置,T表示列车运行的总时间,p表示再生制动反馈能量的效率。
在优化运行能耗、运行时间误差时,利用模糊逻辑的隶属度函数对优化效果进行量化。本文假设列车实际运行时间与计划运行时间的偏差小于5 s是允许的。本文假设列车实际运行时间与计划运行时间的偏差小于5 s是允许的,根据ISO-2631中定义的舒适标准,当颠簸< 3.15时,舒适度最高。因此,得到舒适函数,其中max和minT由车站间最小运行时间速度曲线得到。
对于ATO系统而言,当列车的加速度不大于1.52m/s时乘客较为舒适[1]。TB/T2543-1995《旅客纵向冲动评定方法》指出,可利用列车冲动的加速度变化率来评价列车司机操作的平稳性,以此为基础,采用列车纵向加速度变化率(即冲击率)作为评价高速ATO系统舒适度的指标。
根据列车的运动学方程、线路约束和运行优化目标,建立了列车运行的优化数学模型。
四、建立目标函数
在应用粒子群优化算法进行列车节能优化之前,我们需要建立一个目标函数。目标函数是用于评价列车行驶过程中的能量消耗的函数。
式中,Q 为目标函数值, w1、w2分别为运行能耗权重和运行时分权重,E 为列车实际运行能耗,E0为列车期望的最小运行能耗,与线路条件和列车参数有关,T为列车实际运行时间,T0为区间给定计划运行时分。同时,在列车节能优化中需满足某些约束条件。主要有速度限制约束、停车精度约束以及舒适度约束。
五、部分代码展示
电力机车的牵引特性曲线
function f= TrateForce(veo)
%根据牵引曲线计算牵引力大小
% 传入速度单位为m/s
f=0;
u=veo*3.6; %单位换算
if u<119
f=300-0.285*u;
elseif u<249
f=31500/u; %根据列车最大牵引功率5500kw算得f=5500*3.6/u;
end
end
电力机车的制动特性曲线
function f= BrakeForce(veo)
%UNTITLED3 根据制动曲线计算阻力大小
% 传入速度单位为m/s
% 阻力单位为KN
f=0;
u=veo*3.6; %单位换算
if u<5
f=59.8*u;
elseif u<106.7
f=-0.285*u+300;
elseif u<249
f=28880/u;
end
end
阻力代码
function f = AntiForce(veo,pos)
%UNTITLED6 计算附加阻力
%单位是KN
% 传入速度单位为m/s
M=426.1;
u=veo*3.6;
w0=0.000146*u*u+0.0063*u+0.69;
wi=RoadGradinet(pos);
%wr
%ws
f=(w0+wi)*M*9.8/1000;
end
主程序
%参数初始化
arginitial();
%限速和坡度约束处理,并且保存处理结果
CacBrakeSpeedLimit();
[Emax,Tmin]=CacMinTime();
%粒子群算法参数
options.PopulationSize = 10; %种群大小
options.MaxGenerations = 10; %算法最大迭代次数
options.Continue = 0 ; %是否继续原来的优化
%正式开始优化
for num=1:1
disp(['运行次数:',num2str(num)]);
[res,pos,velo]=PSO_d(options);
[flag,Energy,Time,MissError,overSpeed,sw,jerk] = CalcEJT(res,1);
fitness = CacFitNess(Energy,Time,jerk); %在这里面实现对各单目标的切换
disp(['运行能耗:',num2str( Energy),' 运行时间:',num2str(Time), ' 舒适度:',num2str(jerk)])
end
六、结果展示
下图是列车在30km的区间的运行状况,横坐标是距离,单位为m,纵坐标为速度,单位m/s。可以看到最上面的曲线是改进后的限速曲线,蓝色曲线是粒子群算法根据能量目标优化出来的速度距离曲线,列车在这种路况和工况下,按照这个曲线行驶,能耗会比较低。下面紫色的细线是线路坡度,红色的线则是工况状态。
列车运行情况
下图是列车在区间运行能耗的情况,可见列车的能耗不断增加,其中也有惰行部分不消耗能量。
列车运行过程中能耗情况
八、参考文献
[1]H. Phil, "An optimal strategy for the control of a train," Anziam Journal, vol. 31, pp. 454-471, 1990.
[2] E. Khmelnitsky, "On an optimal control problem of train operation," Automatic Control IEEE Transactions, vol. 45, pp. 1257-1266, 2000.
[3] M. Miyatake and H. Ko, "Optimization of Train Speed Profile for Minimum Energy Consumption," IEEJ Transactions on Electrical and Electronic Engineering, vol. 5, pp. 263-269, 2010.
[4] C. S. Chang and S. S. Sim, "Optimising train movements through coast control using genetic algorithms," IEE Proceedings - Electric Power Applications, vol. 144, pp. 65-73, 1997.
[5] TANG Tao, XUN J, CAO F, and SU S, " Research on energy-efficient driving strategy in Beijing Yizhuang line," Journal of Beijing Jiaotong University, vol. 40, pp. 19-24, 2016.
[6]Long Xue,Jun Cai,Jing Li,Muhua Liu. Application of Particle Swarm Optimization (PSO) Algorithm to Determine Dichlorvos Residue on the Surface of Navel Orange with Vis-NIR Spectroscopy[J]. Procedia Engineering,2012,29(C).
[7]C. A. C. Coello, G. T. Pulido and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Transactions on Evolutionary Computation, vol. 8, pp. 256-279, 2004.
欢迎私信交流!