菜鸡每日一题系列打卡64天
每天一道算法题目
小伙伴们一起留言打卡
坚持就是胜利,我们一起努力!
题目描述(引自LeetCode)
给定一个包含非负整数的m x n网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
说明:
每次只能向下或者向右移动一步。
题目分析
像这种求最值的题目,很容易就会想到动态规划和贪心法。对于这道题目而言,贪心只能找到局部最优解,而不能找到全局最优解。
宜采用动态规划的方式解答,之前动态规划的题目已经做过很多了,思路大致是这样的,首先根据题意进行初始化,然后找状态转移方程,最后即可作答。
详细解释将写在代码注释中,话不多说,上代码!
代码实现
class Solution {
public int minPathSum(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
// 初始化第一列
for (int i = 1; i < m; i++) grid[i][0] += grid[i - 1][0];
// 初始化第一行
for (int i = 1; i < n; i++) grid[0][i] += grid[0][i - 1];
// 动态规划计算结果
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
// 状态转移方程
grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
}
}
// 返回结果
return grid[m - 1][n - 1];
}
}
代码分析
对代码进行分析,程序遍历了二维数组一次,因此,时间复杂度为O(mn),而就空间而言,仅仅使用了常数级别的额外空间,因此,空间复杂度为O(1)。
执行结果
学习 | 工作 | 分享
????长按关注“有理想的菜鸡”
只有你想不到,没有你学不到