每日一题——最小路径和

菜鸡每日一题系列打卡64

每天一道算法题目 

小伙伴们一起留言打卡

坚持就是胜利,我们一起努力!

题目描述(引自LeetCode)

给定一个包含非负整数的m x n网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

示例:
输入:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

说明:

每次只能向下或者向右移动一步。

题目分析

像这种求最值的题目,很容易就会想到动态规划和贪心法。对于这道题目而言,贪心只能找到局部最优解,而不能找到全局最优解。

宜采用动态规划的方式解答,之前动态规划的题目已经做过很多了,思路大致是这样的,首先根据题意进行初始化,然后找状态转移方程,最后即可作答。

详细解释将写在代码注释中,话不多说,上代码!

代码实现

class Solution {


    public int minPathSum(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        // 初始化第一列
        for (int i = 1; i < m; i++) grid[i][0] += grid[i - 1][0];
        // 初始化第一行
        for (int i = 1; i < n; i++) grid[0][i] += grid[0][i - 1];
        // 动态规划计算结果
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                // 状态转移方程
                grid[i][j] += Math.min(grid[i - 1][j], grid[i][j - 1]);
            }
        }
        // 返回结果
        return grid[m - 1][n - 1];
    }


}

代码分析

对代码进行分析,程序遍历了二维数组一次,因此,时间复杂度为O(mn),而就空间而言,仅仅使用了常数级别的额外空间,因此,空间复杂度为O(1)。

执行结果

学习 | 工作 | 分享

????长按关注“有理想的菜鸡

只有你想不到,没有你学不到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值