每日一题——子集 II

菜鸡每日一题系列打卡90

每天一道算法题目 

小伙伴们一起留言打卡

坚持就是胜利,我们一起努力!

题目描述(引自LeetCode)

给定一个可能包含重复元素的整数数组nums,返回该数组所有可能的子集(幂集)。

说明:解集不能包含重复的子集。

示例:
输入: [1,2,2]
输出:
[
  [2],
  [1],
  [1,2,2],
  [2,2],
  [1,2],
  []
]

题目分析

本题是求取子集的题目,之前曾经写过每日一题——子集,两道题目的唯一区别在于本题给出的数组中可能含有重复元素。因此本题只需要额外注意去重操作即可。

菜鸡在每日一题——子集中采用了二进制排序的方式进行解决,为了给小伙伴们提供更多思路参考,在本题中,菜鸡将采用回溯法和迭代法两种方式进行求解。话不多说,上代码!

代码实现

// 回溯法
class Solution {


    private List<List<Integer>> result = new ArrayList<>();


    public List<List<Integer>> subsetsWithDup(int[] nums) {
        Arrays.sort(nums);
        backTrace(nums, 0, new ArrayList<>());
        return result;
    }


    private void backTrace(int[] nums, int start, ArrayList<Integer> tmp) {
        result.add(new ArrayList<>(tmp));
        for (int i = start; i < nums.length; i++) {
            if (i > start && nums[i] == nums[i - 1]) continue;
            tmp.add(nums[i]);
            backTrace(nums, i + 1, tmp);
            tmp.remove(tmp.size() - 1);
        }
    }
    
}
// 迭代法
class Solution {


    public List<List<Integer>> subsetsWithDup(int[] nums) {
        List<List<Integer>> result = new ArrayList<>() {{add(new ArrayList<>());}};
        Arrays.sort(nums);
        int flag = 1;
        for (int i = 0; i < nums.length; i++) {
            List<List<Integer>> tmp = new ArrayList<>();
            for (int j = 0; j < result.size(); j++) {
                if (i < 1 || nums[i] != nums[i - 1] || j >= flag) {
                    int n = nums[i];
                    tmp.add(new ArrayList<>(result.get(j)) {{add(n);}});
                }
            }
            flag = result.size();
            result.addAll(tmp);
        }
        return result;
    }
    
}

代码分析

对代码进行分析,回溯法的时间复杂度为指数级别,空间复杂度也为指数级别。

接下来我们看迭代法的时间复杂度,虽然代码是双重for循环,但内层for循环的次数与结果集大小有关。因此,时间复杂度为指数级别,空间复杂度也为指数级别。

执行结果

回溯法的执行结果

迭代法的执行结果

相关链接

每日一题——子集

学习 | 工作 | 分享

????长按关注“有理想的菜鸡

只有你想不到,没有你学不到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值