菜鸡每日一题系列打卡95天
每天一道算法题目
小伙伴们一起留言打卡
坚持就是胜利,我们一起努力!
题目描述(引自LeetCode)
给定一个整数n,生成所有由1 ... n为节点所组成的二叉搜索树。
示例:
输入:3
输出:
[
[1,null,3,2],
[3,2,null,1],
[3,1,null,null,2],
[2,1,3],
[1,null,2,null,3]
]
解释:
以上的输出对应以下 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
提示:
0 <= n <= 8
题目分析
二叉搜索树是一种递归定义的数据结构,它或者是一棵空树,或者是具有下列性质的二叉树:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。
不熟悉二叉搜索树性质的小伙伴可以看菜鸡的算法修炼——二叉搜索树(二叉搜索树与双向链表),根据二叉搜索树的性质,我们可以得出,题目要求的所有二叉搜索树的个数遵循某种组合数,这个组合数被称为卡特兰数。
了解了二叉搜索树的性质之后,递归生成二叉搜索树是可行的选择。在本题中,菜鸡将会采用递归进行实现,递归过程中需要注意二叉搜索树的左右子树结点值大小的限制。话不多说,上代码!
代码实现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<TreeNode> generateTrees(int n) {
if (n == 0) return new ArrayList<>();
return generate(1, n);
}
public List<TreeNode> generate(int start, int end) {
List<TreeNode> trees = new ArrayList<>();
if (start > end) {
trees.add(null);
return trees;
}
for (int i = start; i <= end; i++) {
List<TreeNode> leftNodes = generate(start, i - 1);
List<TreeNode> rightNodes = generate(i + 1, end);
for (TreeNode left : leftNodes) {
for (TreeNode right : rightNodes) {
TreeNode current = new TreeNode(i);
current.left = left;
current.right = right;
trees.add(current);
}
}
}
return trees;
}
}
代码分析
对代码进行分析,最后生成的二叉搜索树的个数遵循卡特兰数,而每生成一棵二叉搜索树的时间复杂度为O(n),因此,时间复杂度为指数级别;同样,由于需要存储卡特兰数个二叉搜索树,因此,空间复杂度为指数级别。
执行结果
学习 | 工作 | 分享
????长按关注“有理想的菜鸡”
只有你想不到,没有你学不到