每日一题——不同的二叉搜索树 II

菜鸡每日一题系列打卡95

每天一道算法题目 

小伙伴们一起留言打卡

坚持就是胜利,我们一起努力!

题目描述(引自LeetCode)
给定一个整数n,生成所有由1 ... n为节点所组成的二叉搜索树。

示例:


输入:3


输出:
[
  [1,null,3,2],
  [3,2,null,1],
  [3,1,null,null,2],
  [2,1,3],
  [1,null,2,null,3]
]


解释:
以上的输出对应以下 5 种不同结构的二叉搜索树:
   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

提示:

  • 0 <= n <= 8

题目分析

二叉搜索树是一种递归定义的数据结构,它或者是一棵空树,或者是具有下列性质的二叉树:若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;它的左、右子树也分别为二叉搜索树。

不熟悉二叉搜索树性质的小伙伴可以看菜鸡的算法修炼——二叉搜索树(二叉搜索树与双向链表),根据二叉搜索树的性质,我们可以得出,题目要求的所有二叉搜索树的个数遵循某种组合数,这个组合数被称为卡特兰数。

了解了二叉搜索树的性质之后,递归生成二叉搜索树是可行的选择。在本题中,菜鸡将会采用递归进行实现,递归过程中需要注意二叉搜索树的左右子树结点值大小的限制。话不多说,上代码!

代码实现

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {


    public List<TreeNode> generateTrees(int n) {
        if (n == 0) return new ArrayList<>();
        return generate(1, n);
    }


    public List<TreeNode> generate(int start, int end) {
        List<TreeNode> trees = new ArrayList<>();
        if (start > end) {
            trees.add(null);
            return trees;
        }
        for (int i = start; i <= end; i++) {
            List<TreeNode> leftNodes = generate(start, i - 1);
            List<TreeNode> rightNodes = generate(i + 1, end);
            for (TreeNode left : leftNodes) {
                for (TreeNode right : rightNodes) {
                    TreeNode current = new TreeNode(i);
                    current.left = left;
                    current.right = right;
                    trees.add(current);
                }
            }
        }
        return trees;
    }


}

代码分析

对代码进行分析,最后生成的二叉搜索树的个数遵循卡特兰数,而每生成一棵二叉搜索树的时间复杂度为O(n),因此,时间复杂度为指数级别;同样,由于需要存储卡特兰数个二叉搜索树,因此,空间复杂度为指数级别。

执行结果

学习 | 工作 | 分享

????长按关注“有理想的菜鸡

只有你想不到,没有你学不到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值