WHERE 和 HAVING 的对比
- 区别1:
WHERE
可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;HAVING
必须要与GROUP BY
配合使用,可以把分组计算的函数和分组字段作为筛选条件。
这决定了,在需要对数据进行分组统计的时候,HAVING
可以完成 WHERE
不能完成的任务。这是因为, 在查询语法结构中,WHERE
在 GROUP BY
之前,所以无法对分组结果进行筛选。HAVING
在 GROUP BY
之 后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成 的。另外,WHERE
排除的记录不再包括在分组中。
- 区别2: 如果需要通过连接从关联表中获取需要的数据,
WHERE
是先筛选后连接,而HAVING
是先连接后筛选。
这一点,就决定了在关联查询中,WHERE
比 HAVING
更高效。因为 WHERE
可以先筛选,用一 个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING
则需要 先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用 的资源就比较多,执行效率也较低。
- 小结如下:
优点 | 缺点 | |
---|---|---|
WHERE | 先筛选数据再关联,执行效率高 | 不能使用分组中的计算函数进行筛选 |
HAVING | 可以使用分组中的计算函数 | 在最后的结果集中进行筛选,执行效率较低 |
- 开发中的选择:
WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。包含分组 统计函数的条件用 HAVING,普通条件用 WHERE。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。