Kattis Problem - Freckles

23 篇文章 0 订阅
这篇博客介绍了一道编程竞赛题目——Freckles,它涉及到平面内点的连通性问题,要求使用最少的墨水连接所有点。作者通过分析得出这是一个最小生成树问题,并选择了Prim算法来求解,给出了具体的Java代码实现。代码中,首先初始化点的坐标和邻接矩阵,然后运用Prim算法逐步构建最小生成树,最后输出总距离作为答案。
摘要由CSDN通过智能技术生成

Kattis Problem - Freckles

原题地址

题目类型:最小生成树
题意:

在纸上有 n 个点(坐标形式给出),可以用钢笔划线将点连接起来。现在需要用钢笔连线使得所有的点都连通,并使用墨水最少,画线使用墨水的值等于线的长度。

分析:

很明显是要求其最小生成树。在每两个点之间建边,长度为其之间的距离,然后使用 Prim 算法求其最小生成树。使用 Kruskal 算法会超时。

代码
static double[] x;
static double[] y;
static double[][] G;

public static void solve() throws IOException {
    int m = nextInt();
    
    init(m);
    
    for (int i = 0; i < m; i++) {
        x[i] = nextDouble();
        y[i] = nextDouble();
    }
    
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < m; j++) {
            G[i][j] = getDis(x[i], y[i], x[j], y[j]);
        }
    }
    
    double ans = prim(m);
    
    pw.println(String.format("%.2f", ans));
}   

public static double prim(int m) {
    double[] dis = new double[m];
    boolean[] vis = new boolean[m];
    Arrays.fill(dis, INF);
    
    double re = 0;
    for (int i = 0; i < m; i++) {
        int u = -1;
        for (int j = 0; j < m; j++) 
            if (!vis[j] && (u == -1 || dis[u] > dis[j])) u = j;
        
        vis[u] = true;
        if (i != 0) re += dis[u];
        
        for (int j = 0; j < m; j++) dis[j] = Math.min(dis[j], G[u][j]);
    }
    
    return re;
}

public static void init(int m) {
    x = new double[m];
    y = new double[m];
    G = new double[m][m];
    for (int i = 0; i < m; i++)
        for (int j = 0; j < m; j++)
            G[i][j] = (i == j ? 0 : INF);
}

public static double getDis(double x1, double y1, double x2, double y2) {
    return Math.sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值