最长上升子序列
即一串给定的数字中,(可以不连续但必须符合原定顺序)一个最长的上升数字子串。
最长不上升子串
同上,即小于等于
重点
此题用到了一种方法,即先将dp【1】=a【1】,之后开始一个一个查找后面的数字,如果该数字小于等于(这是对最长不上升子串来说的,如果是最长上升子串则为大于)当前dp数组最后一位,则加入到最后面,如果该数字大于dp中最小的数字,则利用二分法插入,如此循环,dp的长度就是答案。
(这是因为只有小于等于时dp数组长度才变化,其他情况只是在替换,让更多的数可以插进去)
将我卡死了两小时的点
在利用二分查找时可以使用STL中的函数,但我选择了手写,一定要注意求最长不上升子序列时要替换的是第一个小于a[i]的数字,如果这个被替换数字不在末尾,可能不会有什么大问题(其实还会有),但一旦在最后,那么你的最终答案就一定错了(极大概率),例如 5 3 这时要插入一个5 如果你找的是小于等于,像这样
while(left<=right)
{
if(dp[mid]<=a[i])
right=mid-1;
else
left=mid+1;
mid=(left+right)>>1;
}
那么5将会被换成5 但其实你需要把 3换成5 ,所以应该要这样
while(left<=right)
{
if(dp[mid]<a[i])
right=mid-1;
else
left=mid+1;
mid=(left+right)>>1;
}
一个等号之差便决定对错
而在求最长上升子序列时也是如此,一定要找第一个大于等于a[i]的数字,例如1 2 3 你要插入一个2 如果找的是大于的 ,那么 就成了 1 2 2 显然不对,应当把2 替换成 2
之后附上AC代码
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<stdio.h>
using namespace std;
int a[100005];
int dp[100005];
int dp2[100005];
int main()
{
//freopen("D:\\test\\in.txt","r",stdin);
int k=1;
while(scanf("%d",&a[k])!=EOF)
k++;
k--;
dp[1]=a[1];
dp2[1]=a[1];
int len=1;
int len2=1;
for(int i=2;i<=k;i++)
{
if(dp[len]>=a[i])
dp[++len]=a[i];//cout<<"dp[len]:"<<dp[len-1]<<"a"<<a[i]<<endl;
else
{
int left=1;
int right=len;
int mid=(left+right)>>1;
while(left<=right)
{
if(dp[mid]<a[i])
right=mid-1;
else
left=mid+1;
mid=(left+right)>>1;
}
//cout<<"dp"<<dp[left]<<endl;
dp[left]=a[i];
//cout<<"dp"<<a[i]<<endl;
}
if(dp2[len2]<a[i])
dp2[++len2]=a[i];
else
{
int left=1;
int right=len2;
int mid=(left+right)>>1;
while(left<=right)
{
if(dp2[mid]>=a[i])
right=mid-1;
else
left=mid+1;
mid=(left+right)>>1;
}
dp2[left]=a[i];
}
}
cout<<len<<endl;
cout<<len2<<endl;
// fclose(stdin);
return 0;
}