1、题目:将有序数组转换为二叉搜索树
给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
2、解题思路
递归
递归三步曲
1、确定递归函数的参数和返回类型,删除二叉树节点,增加二叉树节点,都是用递归函数的返回值来完成,这样是比较方便的。那么本题要构造二叉树,依然用递归函数的返回值来构造中节点的左右孩子。再来看参数,首先是传入数组,然后就是左下标left和右下标right。
TreeNode* traversal(vector<int>& nums, int left, int right)
2、确定终止条件,这里定义的是左闭右闭的区间,所以当区间 left > right的时候,就是空节点了。
if (left > right) return nullptr;
3、确定单层递归的逻辑,首先取数组中间元素的位置,就开始以中间位置的元素构造节点,接着划分区间,root的左孩子接住下一层左区间的构造节点,右孩子接住下一层右区间构造的节点。最后返回root节点。
3、代码
class Solution {
private:
TreeNode* traversal(vector<int>& nums, int left, int right) {
if (left > right) return nullptr;
int mid = left + ((right - left) / 2);
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
}
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
TreeNode* root = traversal(nums, 0, nums.size() - 1);
return root;
}
};