MATLAB实验五

本文展示了使用MATLAB进行多种图形绘制,包括正弦波与指数序列的叠加图,不同颜色和线型的曲线,以及正弦与余弦曲线的交点。同时,还涵盖了3D曲线、双曲抛物面的绘制,以及饼状图和随机数的直方图、阶跃图表示。
摘要由CSDN通过智能技术生成

实验五

A

1、在同一图形窗口绘制。利用plot绘图指令绘图命令。

(1)在窗口上部绘制正弦信号 x ( t ) = s i n ( 0.5 π t + π 4 ) , t ∈ [ 0 , 4 π ] x(t)=sin(0.5\pi t+\frac \pi 4),t∈[0,4\pi] x(t)=sin(0.5πt+4π),t[0,4π]。要求曲线为黑色实线。

(2)使用hold on命令在同一窗口重叠绘制信号 g ( t ) = x ( t ) × 0. 5 t , t ∈ [ 0 , 4 π ] g(t)=x(t)×0.5^t,t∈[0,4\pi] g(t)=x(t)×0.5t,t[0,4π]。要求曲线线型为红色点划线。

(3) X轴标注 “time(t/s)”,y轴标注"x(t)/g(t)“,标题为"正弦/指数序列”。

(4)使用legend命令在图的右上角标注两条曲线的图例。

(5)使用gtext交互式图形命令,分别标注曲线x(t)和y(t)。

clear;
clc;

t=0:pi/30:4*pi;
x=sin(0.5*pi*t+pi/4);
plot(t,x,'k')
hold on
g=x.*0.5.^t;
plot(t,g,'r-.')
xlabel('time(t/s)')
ylabel('x(t)/g(t)')
title('Sine/exponential sequence')
legend({'x(t)','g(t)'})
gtext('x(t)')
gtext('g(t)')

输出结果为:

image-20220928223625496

2.按要求绘图

(1)生成一个幅度为1V,频率为5Hz的正弦信号,信号长1秒。

5个周期

(2)再生成一个 (0, 0.01) (正态分布)的白噪声信号,信号长1秒。将两者叠加。

设采样频率为100Hz,将正弦信号、白噪声信号和叠加信号放在同一图中显示(三种信号示意图如下所示)。

(要求正弦信号为红色,白噪声为黄色。叠加之后为蓝色。)

image-20220928202616176

clear;
clc;

t=0:0.001:1;
y1=sin(10*pi*t);
plot(t,y1,'r')
hold on
y2=sqrt(0.01)*randn(size(t));
plot(t,y2,'y')
hold on
plot(t,y1+y2)

输出结果为:

image-20220928210001795

clear;
clc;

t=linspace(0,1,100);
y=sin(10*pi*t);
y1=randn(1,100)*0.01;
subplot(311)
plot(t,y,'r')
subplot(312)
plot(t,y1,'y')
subplot(313)
plot(t,y+y1,'b')

在这里插入图片描述

B

1.编写程序,该程序在同一窗口中绘制函数在【0,2π】区间内的正弦曲线和余弦曲线,步长为π/10,线宽为4个像素,正弦曲线设置为蓝色实线,余弦曲线设置为红色虚线,两条曲线交点处,用红色星号标记。

clear;
clc;

t=0:pi/20:2*pi;#修改一下步长,否责没有交点,y1==y2,返回的是一个空向量
y1=sin(t);
y2=cos(t);
k=find(abs(y1-y2)<1e-1);#因为没有直接相等的点
t1=t(k);
plot(t,y1,'LineWidth',4)
hold on
plot(t,y2,'r--','LineWidth',4)
hold on
plot(t1,cos(t1),'k*','LineWidth',4)#用黑色更明显一点

输出结果为:

image-20220928215243414

2.绘制下列图形∶

(1) y=xsinx,0<x<10π

clear;
clc;

x=0:pi/30:10*pi;
y=x.*sin(x);
plot(x,y)

输出结果为:

image-20220928220124085

(2)三维曲线∶$z=x2+6xy+y2+6x+2y-1,-10<x<10,-10<y<10 $

clear;
clc;

[X,Y] = meshgrid(-10:0.5:10);
Z = X.^2 + 6*X*Y + Y.^2 + 6*X + 2*Y -1;
plot3(X,Y,Z)

输出结果为:

image-20220928221151607

(3)双曲抛物面∶ z = x 2 16 − y 2 4 , − 16 < x < 16 , − 4 < y < 4 z=\frac{x^2}{16}-\frac{y^2}{4},-16<x<16,-4<y<4 z=16x24y2,16<x<16,4<y<4

clear;
clc;

[X,Y] = meshgrid(-16:0.4:16,-4:0.1:4);#点的个数要相同
Z = X.^2/16 - Y.^2/4;
plot3(X,Y,Z)

在这里插入图片描述

3.绘制下列图像

(1) 绘制电脑磁盘使用情况的饼状图

clear;
clc;

X=[13.9,18.1];
pie3(X,{'Available space','Used space'})

输出结果为:

image-20220928221858218

(2) 生成 100 个从 0 到 10 之间的随机整数,绘制其直方图

clear;
clc;

x=round(randn(1,100)*10)
hist(x)

输出结果为:

image-20220928222405893

(3) 生成 10个从 0 到 10 之间的随机整数,绘制其阶跃图

clear;
clc;

x=round(randn(1,100)*10)
stairs(x)

输出结果为:

image-20220928222554341

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

W_chuanqi

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值