Floyd算法(事实证明只会SPFA和Dijkstra还是不够啊)

本文详细介绍Floyd算法原理及其应用,该算法是一种解决任意两点间最短路径问题的有效方法。通过三个嵌套循环来不断更新距离矩阵,确保最终得到的是两点间最短路径。

正如我们所知道的,Floyd算法用于求最短路径。Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3)

Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从AB2是从A经过若干个节点XB。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从AX再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点XDis(AB)中记录的便是AB的最短路径的距离。

很简单吧,代码看起来可能像下面这样: 

  1. for ( int i = 0; i < 节点个数; ++i )  
  2. {  
  3.     for ( int j = 0; j < 节点个数; ++j )  
  4.     {  
  5.         for ( int k = 0; k < 节点个数; ++k )  
  6.         {  
  7.             if ( Dis[i][k] + Dis[k][j] < Dis[i][j] )  
  8.             {  
  9.                 // 找到更短路径  
  10.                 Dis[i][j] = Dis[i][k] + Dis[k][j];  
  11.             }  
  12.         }  
  13.     }  
  14. }  

但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把ij的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。

让我们来看一个例子,看下图:


图中红色的数字代表边的权重。如果我们在最内层检查所有节点X,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9。而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点X放在最内层,造成过早的把AB的最短路径确定下来了,当确定A->B的最短路径时Dis(AC)尚未被计算。所以,我们需要改写循环顺序,如下:

  1. for ( int k = 0; k < 节点个数; ++k )  
  2. {  
  3.     for ( int i = 0; i < 节点个数; ++i )  
  4.     {  
  5.         for ( int j = 0; j < 节点个数; ++j )  
  6.         {  
  7.             if ( Dis[i][k] + Dis[k][j] < Dis[i][j] )  
  8.             {  
  9.                 // 找到更短路径  
  10.                 Dis[i][j] = Dis[i][k] + Dis[k][j];  
  11.             }  
  12.         }  
  13.     }  

点此文章出处
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值