最短路径算法总结(Dijkstra、Bellman-ford、SPFA和Floyd)

在最短路径算法中,常用的有Dijkstra、Bellman-ford、spfa、Floyd这四大算法

  1. Dijkstra:迪克斯特拉算法
  2. Bellman-ford:贝尔曼-福特算法
  3. SPFA:Shortest Path Faster Algorithm算法
  4. Floyd:弗洛伊德算法

四大算法介绍

简介

Dijkstra:是一种用于求解单源最短路径的贪心算法。它从起始节点开始,逐步扩展到其他节点,每次选择当前距离起始节点最近的节点进行扩展。通过不断更新节点的最短距离,最终得到起始节点到其他所有节点的最短路径(Dijkstra算法(求最短路)

Belman-ford:是一种用于求解单源最短路径的动态规划算法。它通过对图中所有边进行松弛操作,逐步更新节点的最短距离。贝尔曼-福特算法可以处理带有负权边的图,并且能够检测出图中是否存在负权回路(Bellman-Ford算法

SPFA:是一种用于解决单源最短路径问题的算法,它也是对Bellman-Ford算法的一种优化。SPFA算法的基本思想是利用队列来存储待处理的顶点,通过不断地松弛操作来更新顶点的最短路径值

Floyd:又称插点法,是一种用于求解任意两点间最短路径的动态规划算法。它通过不断更新节点之间的最短距离,逐步求解出所有节点之间的最短路径。弗洛伊德算法适用于有向图或无向图,可以处理带有负权边的图

时间复杂度

算法时间复杂度
一般DijkstraO(n^2)
堆优化版DijkstraO(mlogn)
Belman-fordO(nm)
spfa一般O(m),最坏O(nm)
FloydO(n^3)

适用场景

算法适用场景最短路问题
一般Dijkstra所有边权都是正数单源最短路
堆优化版Dijkstra
Belman-ford存在负权边且限制经过边数
spfa存在负权边
Floyd不能有负权回路多源汇最短路

四大算法思路

1.1、一般Dijkstra

例题:Dijkstra求最短路 I

初始条件:

  1. 节点1到其余节点的初始距离为正无穷大
  2. 节点1到节点1距离为0

最外层循环(n):

  1. 从未标记的节点中选择距离出发点最近的节点并标记该点
  2. 计算刚标记点的所有出边,若(节点1到该点距离+出边权重) < 已存的出边目标节点的距离,就更新节点距离

代码模版:

const int N = 10010;//根据题目具体定义数字大小
typedef int INF = 0x3f3f3f3f;//表示正无穷大

int dist[N];//表示节点1到节点n的距离解集
bool st[N];//表示节点n是否被标记
int g[N][N];//表示边

//初始化
int dist[1]=0,dist[2]=INF,......,dist[n]=INF;

int Dijkstra(){
    //初始条件
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;  
    //遍历n次循环,即标记n个点并扩展了n个点的所有出边
    for(int i=1 ; i <= n ; i++){
          
        1、从未标记的节点中选择距离出发点最近的节点并标记该点
        int t = -1;
        for(int j=1 ; j <=n ; j++){
            if(!st[i] && (t==-1 || dist[t]>dist[j]){
                t = j;
            }
        }
        st[t] = true;

        2、计算刚标记点的所有出边
        for(int j=1;j <= n ; j++){
            dist[j] = min(dist[j],dist[t]+g[t][j]);
        }
    }
    
    if (dist[n] == 0x3f3f3f3f) {
        return -1;
    }
    return dist[n];

}

总结:一般Dijkstra算法,在第二层循环中有冗余,即 j 有多次非必要遍历。当n在100000时,时间复杂度为n^2的话可能会导致超时,因此当图为稀疏图时,可以采用堆优化版的Dijkstra算法

1.2、堆优化版Dijkstra

例题:Dijkstra求最短路 II

初始条件:

  1. 节点1到其余节点的初始距离为正无穷大
  2. 节点1到节点1距离为0

循环:

  1. 从队列中未标记的节点取出距离出发点最近的节点并标记该点
  2. 计算刚标记点的所有出边,若更新了节点距离,并将后续节点压入队列

代码模版:

//定义pair类型,其值分别代表节点1到该节点距离,节点号
typedef pair<int,int> PII;
const int N=1e6+10;
int dist[N];//解集
bool st[N];//表示该节点是否被标记

//使用邻接表来存储边
int h[N],e[N],ne[N],w[N],idx=0;
//e[]存储目标节点,w[]存储权重,h[]的索引代表起始节点

int Dijkstra(){
    //初始条件
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    priority_queue<PII,vector<PII>,greater<PII>> heap;
    heap.push({0,1});//压入初始状态    

    //循环
    while(heap.size){
        
        //标记节点
        auto t = heap.top;
        heap.pop();
        int ver=t.second,distance=t.first;
        if(st[ver]){continue;}
        st[ver] = true;
        
        //扩展节点
        for(int i=h[ver] ; i != -1 ; i = ne[i]){
            int j = e[i]
            if(dist[j] > dist[ver] + w[i]){
                dist[j] = dist[ver] + w[i];
                heap.push({dist[j],j});
            }
        }
    }    
    
    if(dist[n] == 0x3f3f3f3f){
        return -1;
    }
    return dist[n];

}

思考:优先队列heap采用的是greater小顶堆,所以距离最小的会放在第一位,因此取出队头时就保证了取出的点是队列中距离最小的。Bellman-ford和SPFA算法一样可以用于判断负环是否存在。

2、Bellman-ford

例题:bellman-ford:有边数限制的最短路

初始条件:

  1. 节点1到其余节点的初始距离为正无穷大
  2. 节点1到节点1距离为0

最外层循环(n):

  1. 遍历所有边并进行松弛操作

代码模版:

const int N=510,M=10010;//点数和边数,根据题目自由设置
//边的结构体
struct Edge{
    int a,b,w;
}Edges[M];
//dist[]解集,backup[]下次循环前解集结果
int dist[N],backup[N];

//n:输入的点数
//m:输入的边数
//k:输入的只能经过几条边
int n,m,k;

void Bellman-ford(){
    //初始条件
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    
    for(int i=1 ; i <= k ; i++){
        //备份
        memcpy(backup,dist,sizeof(dist));
        //遍历所有边并进行松弛操作
        for(int j=0 ; j < m ; j++){
            auto e = Edges[j];
            dist[e.b] = min(dist[e.b],backup[e.a]+e.w);
        }
    }

}

总结:

1、因为SPFA算法的效率高于Bellman-ford算法,因此Bellman-ford算法一般用于有边数限制并存在负权的情况。

2、最外层的n次循环有一个实际意义为从节点1到节点x经过的边不超过n条边。

3、bankup的意义为防止串联,串联即在循环中dist经过一次循环并不止更新一条边,而是更新点以及它的所有出边。串联会导致调用错误的数据,导致结果不正确,

3、SPFA

3.1求最短路

例题:spfa求最短路

初始条件:

  1. 节点1到其余节点的初始距离为正无穷大
  2. 节点1到节点1距离为0

循环:

  1. 从队列取出的队头并取消标记
  2. 对该节点进行出边循环(松弛操作)

求最短路代码模版:

const int N=1e5+10;
int dist[N];//解集
bool st[N];//表示该节点是否在队列中

//使用邻接表来存储边
int h[N],e[N],ne[N],w[N],idx=0;
//e[]存储目标节点,w[]存储权重,h[]的索引代表起始节点

int spfa(){
    //初始条件
    memset(dist,0x3f,sizeof(dist));
    dist[1]=0;
    queue<int> q;
    q.push(1);
    st[1]=true;

    while(q.size){
        //取出队头
        int t = q.front();
        q.pop();
        st[t].false;
    
        for(int i = h[t] ; i != -1 ; i = ne[i]){
            int j = e[i];
            if(dist[j] > dist[t]+w[i]){
                dist[j]=dist[t]+w[i];
                if(!st[j]){//如果目标不在队列则加入
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    
    return dist[n];
}

3.2判断负环

例题:spfa判断负环

初始条件:

  1. 所有点都压入队列中

循环:

  1. 从队列取出的队头并取消标记
  2. 对该节点进行出边循环(松弛操作)

判断负环代码模版:

const int N = 2010, M = 10010;

int dist[N];//解集
int cnt[N];//边数
bool st[N];//该节点是否在队列中

//使用邻接表来存储边
int h[N],e[N],ne[N],w[N],idx=0;
//e[]存储目标节点,w[]存储权重,h[]的索引代表起始节点

bool spfa(){

    //将所有节点都压入队列(负环不确定在哪个位置)
    queue<int> q;
    for (int i = 1; i <=n ; ++i) {
        st[i] = true;
        q.push(i);
    }
 
    while(q.size()){
        //取出并弹出队头,
        int t = q.front();
        q.pop();
        st[t]=false;

        //对该节点进行出边循环
        for (int i = h[t]; i != -1 ; i=ne[i]) {
            int j = e[i];
            if (dist[j] > dist[t]+w[i]){
                dist[j]=dist[t]+w[i];
                cnt[j] = cnt[t] + 1;
                //如果边数大于n,说明有n+1个点,但只有n个点,此时确定有负环返回true;
                if (cnt[j] >= n){
                    return true;
                }
                if(!st[j]){
                    q.push(j);
                    st[j]=true;
                }
            }
        }
    }
    return false;
}
 

4、Fyold

例题:Floyd求最短路

初始条件:

  1. 所有节点到它本身的距离为0
  2. 所有节点到其他节点为无穷大

循环:

  • 三层循环,从外到内分别是k,i,j。k代表迭代次数。
const int N=210,INF=1e9;
int n,m,Q;//输入的点数、边数、求解数
//dist[][]一开始作为边矩阵的输入,在调用Floyd后dist[x][y]为x到y的最短距离
int dist[N][N];
 
void Floyd(){
    //初始条件
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= n; ++j) {
            if(i == j){
                //防止自环
                dist[i][j] = 0;
            }else{
                //其余节点为真无穷大
                dist[i][j] = INF;
            }
        }
    }


    for (int k = 1; k <= n; ++k) {
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n;j++){
                dist[i][j] = min(dist[i][j],dist[i][k]+dist[k][j]);
            }
        }
    }
}

总结:三个循环嵌套,i,j的循环是任意两个点,而 k 则是两个点之间所经过的第三个点,我们就是在循环之中不断比较从i到j的距离与从 i 到 k 距离加上从 k 到 j 距离的大小,如果经过这个点,路径变短了,我们就接受这个点,认为可以经过这个点;否则就不经过这个点,就是从 i 到 j 最短

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏大橙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值