通过调用Pytorch Api 实现线性回归

具体代码

import torch
import torch.nn as nn
from torch.optim import SGD

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

x = torch.rand([500, 1]).to(device)
y_true = 6 * x + 2.5


class MyLinear(nn.Module):
    def __init__(self):
        super(MyLinear, self).__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, x):
        out = self.linear(x)
        return out


model = MyLinear().to(device)
optimizer = SGD(model.parameters(), 0.001)
loss_fn = nn.MSELoss()

for epoch in range(50000):
    y_predict = model(x)
    loss = loss_fn(y_predict, y_true)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if epoch % 100 == 0:
        params = list(model.parameters())
        print(f'loss:{loss.item()} {params[0].item()} {params[1].item()}')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值