沐念丶
码龄5年
关注
提问 私信
  • 博客:70,755
    动态:1
    70,756
    总访问量
  • 47
    原创
  • 2,228,400
    排名
  • 17
    粉丝
  • 0
    铁粉

个人简介:少一些功利主义的追求,多一些不为什么的坚持!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2019-11-14
博客简介:

ZongXS的博客

查看详细资料
个人成就
  • 获得27次点赞
  • 内容获得10次评论
  • 获得218次收藏
  • 代码片获得140次分享
创作历程
  • 2篇
    2021年
  • 49篇
    2020年
成就勋章
TA的专栏
  • MySQL
    2篇
  • HTML
    3篇
  • Pytorch
    19篇
  • myself
    1篇
  • 强化学习
    9篇
  • 迁移学习
    3篇
  • 便捷工具
    6篇
  • Python
    6篇
  • Numpy
    3篇
兴趣领域 设置
  • 大数据
    mysql
  • 服务器
    linux
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

367人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

联邦学习介绍

联邦学习背景联邦学习概述联邦学习发展简介未来趋势参考文献背景当今是大数据(Big Data)时代,而大数据正是人工智能(Artificial Intelligence,AI)应用蓬勃发展的“燃料”。事实却是,我们面对的数据常常既是小规模,又是碎片化的。同时数据源之间存在着难以打破的堡垒,一般情况下人工智能的所需要的数据会涉及多个领域,例如在基于人工智能的产品推荐服务中,产品销售方拥有产品的数据、用户购买商品的数据,但是没有用户购买能力和支付习惯的数据。在大多数行业中,数据是以孤岛的形式存在的,由于行业竞
原创
发布博客 2021.06.09 ·
1421 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

联邦学习相关论文综述

联邦学习综述联邦学习综述联邦学习隐私保护研究进展三级目录联邦学习综述联邦学习隐私保护研究进展三级目录
原创
发布博客 2021.06.09 ·
1295 阅读 ·
1 点赞 ·
2 评论 ·
5 收藏

PyCharm如何连接MySQL数据库

PyCharm是一款常用的Python开发的软件,这里给大家介绍一下如何在PyCharm如何连接MySQL数据库。首先,我们需要找到页面中的DataBase窗口,一般在页面的右侧,没有显示的话,可以点击View-> Tool Windows->DataBase。然后显示DataBase之后,我们点击DataBase。然后我们点击DataBase的这个 + 号。然后选择Data Source -> MySQL。然后就显示到连接的页面,如果是第一次连接的时候,就需要点击下面的D
原创
发布博客 2020.08.12 ·
5807 阅读 ·
6 点赞 ·
7 评论 ·
70 收藏

Navicat连接MySQL出现2059错误

网上查询过后,发现这个错误出现的原因是在mysql8之前的版本中加密规则为mysql_native_password,而在mysql8以后的加密规则为caching_sha2_password。解决此问题有两种方法,一种是更新navicat驱动来解决此问题,一种是将mysql用户登录的加密规则修改为mysql_native_password。;根据网上大部分建议采取了第二种方式:1.用管理员权限打开cmd,输入mysql -u root -p进入输入密码后进入mysql数据库;mysql -u ro.
原创
发布博客 2020.08.12 ·
279 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HTML常用标签

常用标签标题标签段落标签换行标签示例标题标签段落标签换行标签示例<body> <h1>一级标题</h1> <h2>二级标题</h2> <h3>三级标题</h3> <h4>四级标题</h4> <h5>五级标题</h5> <h6>六级标题</h6> <!-- 段落标签:<p&
原创
发布博客 2020.07.20 ·
210 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HTML基本语法和标签解读

HTML语法规范基本语法概述标签关系基本结构标签第一个HTML网页第一个页面实践基本结构标签总结基本语法概述标签关系基本结构标签第一个HTML网页其中:第一个页面实践<html> <head> <title>第一个页面</title> </head> <body> 不负韶华! </body></html>运行结果:基本结
原创
发布博客 2020.07.20 ·
292 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

网页相关概念

网站指在因特网上根据一定的规则,使用Html等制作的用于展示特定内容相关的网页集合。网页网站的一“页”,通常是Html格式的文件,通过浏览器阅读。网页是构成网站的基本元素,通常是由图片、链接、文字、声音、视频等元素组成,通常我们看到的网页,常见以.htm 或 .html 后缀结尾的文件,因此将其俗称为HTML文件。Web标准的构成结构(Structure)、表现(Presentation)和行为(Behavior)三个方面。标准说明结构用于对网页元素进行整理和分类,主要指
原创
发布博客 2020.07.20 ·
375 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

windows:Python + Vscode 安装文档

安装步骤安装Python安装pip安装VS Code 编辑器安装Python①win7,win8,win10系统,建议下载python3.7.4版本:【直达链接】https://www.python.org/downloads/release/python-374/②win xp:建议下载 python 3.4.4版本【直达链接】https://www.python.org/downloads/release/python-344/Python安装包虽然版本不同,但安装过程其实都是差不多的。往
原创
发布博客 2020.07.16 ·
1138 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

Jupyter Notebook 常用快捷键

命令模式下常用的快捷键Shift-Enter : 运行本单元,选中下个单元Ctrl-Enter : 运行本单元Alt-Enter : 运行本单元,在其下插入新单元Y : 单元转入代码状态M :单元转入markdown状态R : 单元转入raw状态1 : 设定 1 级标题2 : 设定 2 级标题3 : 设定 3 级标题4 : 设定 4 级标题5 : 设定 5 级标题6 : 设定 6 级标题A : 在上方插入新单元B : 在下方插入新单元X : 剪切选中的单元C : 复制选中的
原创
发布博客 2020.07.13 ·
540 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Pytorch学习之损失函数

损失函数损失函数通过torch.nn包实现,1 基本用法criterion = LossCriterion() #构造函数有自己的参数loss = criterion(x, y) #调用标准时也有参数2 损失函数2-1 L1范数损失 L1Loss计算 output 和 target 之差的绝对值。torch.nn.L1Loss(reduction=‘mean’)参数:reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:m
转载
发布博客 2020.07.12 ·
975 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

送给爱人的诗

《有你在》独自走在昏黄路灯的街边夏的风冬的雪勾勒你的侧脸在目送你离开的第三天我就像过了一个世纪这么远时钟声敲打着寂静的深夜失去你的温热我彻夜无眠回想你说有你在什么都非阻碍短暂的离别为了日后永远我从不轻信虚无的承诺却只要你的一个眼神就心动我不是双鱼座 却沉溺你勾勒的美梦追寻你、拥抱你、不想去闪躲未来已来 怎么都躲不开有你在 我就有勇气去爱只要你还在,牵手不放开冰霜风雪于我不过烟火绚烂...
原创
发布博客 2020.07.10 ·
131 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Gym画图

Gym画图首先导入gym和gym中的rendering模块import gymfrom gym.envs.classic_control import rendering定义一个环境类,该类继承gym.Env,同时添加元数据,改变渲染环境时的参数class Environment(gym.Env): # 如果你不想改参数,下面可以不用写 metadata = { 'render.modes': ['human', 'rgb_array'], 'vi
原创
发布博客 2020.07.08 ·
1192 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

VMware中的Ubuntu安装vmware tools工具使页面尺寸变大

安装步骤启动vmware workstation软件,运行ubuntu虚拟操作系统,登陆进入ubuntu桌面。选择“虚拟机”->“安装vmware tools”双击桌面的“vmware tools”,打开vmware tools安装介质。右键选择vmwaretools的gz压缩包,将该文件复制到temp文件夹,至于复制到什么文件夹。大家可以自行选择。右键点击该文件,选择“提取到此处”。打开解压后的vmwaretools文件夹,右键点击vmware-tools-distrib文件夹,选择“在
原创
发布博客 2020.07.06 ·
360 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Pytorch实现标准RNN、LSTM和GRU

标准RNN先给出标准RNN的示意图,如下图所示:从图中可以看到在标准RNN的内部网络中,计算公式为:ht=tanh(wih∗xt+bih+whh∗ht−1+bhh)h_t=tanh(w_{ih}*x_t+b_{ih}+w_{hh}*h_{t-1}+b_{hh})ht​=tanh(wih​∗xt​+bih​+whh​∗ht−1​+bhh​)在Pytorch中的调用也非常简单,只需nn.RNN()nn.RNN()nn.RNN()即可。下面介绍其中的参数。input_size表示输入xtx_txt​的
原创
发布博客 2020.07.05 ·
1112 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

循环神经网络:GRU

GRUGRU是由Cho在2014年提出的,全称是Gated Recurrent Unit。它与LSTM最大的不同在于GRU将遗忘门和输入门合成了一个“更新门”,同时网络不再额外给出记忆状态CtC_tCt​,而是将输出结果hth_tht​作为记忆状态不断向后循环传递,网络的输入和输出都变得特别简单。具体的计算过程如下图所示:在本质上,GRU和LSTM是相同的,将上一时刻t−1t-1t−1输出ht−1h_{t-1}ht−1​和当前ttt时刻的输入xtx_txt​结合起来计算各种衰减系数,略微不同的地方是,线性
原创
发布博客 2020.07.05 ·
1857 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

循环神经网络:LSTM

LSTMLSTMLSTMLSTM的网络结构是1997年由HochreiterHochreiterHochreiter和SchmidhuberSchmidhuberSchmidhuber提出的,全称是Long Short Term Memory Networks$的缩写,字面翻译就是长的短时记忆网络,其实解决的仍是短时记忆问题,只不过这种短时记忆比较长,能在一定程度上解决长时依赖的问题。这种网络结构也是链式循环的网络结构,但其内部有着更加复杂的结构,其抽象网络结构示意图如下所示:...
原创
发布博客 2020.07.05 ·
496 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

循环神经网络

循环神经网络循环神经网络的基本结构存在的问题循环神经网络的基本结构通俗讲,循环神经网络的结构就是将网络的输出保存在一个记忆单元中,这个记忆单元和下一次的输入一起进入神经网络中。使用一个简单的两层网络示范,如下图:图中,我们可以看到网络在输入的时候会联合记忆单元一起作为输入,其中,网络不仅输出结果,还会将结果保存到记忆单元中。上图就是一个最简单的循环神经网络在一次输入时的结构示意图。可以发现,输入序列的顺序改变,网络输出的结果也会随之改变,这是因为记忆单元的存在,使得两个序列在顺序改变之后记忆单元中的元素
原创
发布博客 2020.07.04 ·
432 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

强化学习中的迁移学习

强化学习中迁移学习描述强化学习中的迁移问题强化学习中迁移学习的分类强化学习中的迁移应用最新进展描述强化学习中的迁移问题强化学习是一种根据环境反馈进行学习的技术。其agentagentagent辨别自身所处的状态(statestatestate),按照某种策略决定动作(actionactionaction),并根据环境反馈的奖励来调整策略,直至达到最优。马尔科夫决策MDP(MarkovDecisionProcess)MDP(Markov Decision Process)MDP(MarkovDecisio
原创
发布博客 2020.07.03 ·
3053 阅读 ·
1 点赞 ·
0 评论 ·
23 收藏

迁移学习与传统机器学习

迁移学习的定义给定一个源域DsD_sDs​和源学习任务TsT_sTs​,一个目标域DtD_tDt​和目标学习任务TtT_tTt​,迁移学习致力于通过使用源域DsD_sDs​和源任务TsT_sTs​中的知识,帮助提升目标域DtD_tDt​中的目标预测函数ft()f_t()ft​()的学习,其中Ds≠DtD_s
eq D_tDs​​=Dt​,或者Ts≠TtT_s
eq T_tTs​​=Tt​。迁移学习类别划分根据迁移学习的定义,由源域和目标域与任务之间的不同情况,可将迁移学习分为以下三类:归纳
原创
发布博客 2020.07.03 ·
1407 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

迁移学习

迁移学习迁移学习概论预训练模型ImageNetImageNetImageNet与MNISTMNISTMNIST迁移学习概论举例说明迁移学习的概念。想象一下,你从一个完全陌生的领域学习一个主题。你会采取什么不同的方法来理解这个主题?可能会:网上搜寻资源阅读文章和博客参考书籍寻找视频教程,等等所有这些都会帮助你熟悉这个主题。在这种情况下,你是唯一一个付出所有时间来熟悉主题的人。但还有一种方法,它可能在短时间内产生更好的结果。你可以咨询对你想要学习的主题具有能力的领域/主题专家。这个人会把他/她
原创
发布博客 2020.07.03 ·
350 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多